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1 Analytification

1.1 Over the complex numbers

Definition 1.1. A complex analytic space is a locally ringed space (X, Ox) such that for each x € X there
exists an open U C X with the property that (U, Ox|u) is isomorphic to {v € V | fi(v) = --- = fi(v) =0},
where V' is an open subset of C™ and f; are complex analytic functions (in other words, holomorphic functions)
defined on V.

Let X be a finite type scheme over C. Then X is locally given by SpecC[ty,...,t,]/(f1,..., fx). Tt follows
that X" := X(C), endowed with the analytic topology and analytic structure sheaf, is a complex analytic
space, called the analytification of X. Moreover, in the category of locally ringed spaces (in which both
schemes and complex analytic spaces fully faithfully embed), we have a morphism e: X** — X induced
by the inclusion X" C X. Given any other complex analytic space Z and morphism Z — X, it uniquely
factors through X** — X. We therefore find the following characterization of the analytification:

Lemma 1.2. Let X be a finite type scheme over C. Then the functor of points of X°™ is given by

(Complex analytic spaces) — (Sets)
Z — Hom(Z, X).

The Hom-set is taken in the category of locally ringed spaces.

This defines a functor:
(—)*": (Finite type schemes/C) — (Complex analytic spaces).

It has the following fundamental properties:

1. X is connected/reduced/smooth/separated/proper if and only if the same is true for X*". (In more
common parlance, replace separated by Hausdorfl and proper by compact.)

2. If X is proper, the functor & — %" = ¢*.% from coherent sheaves on X to coherent sheaves on X %"
is an equivalence and induces an isomorphism on sheaf cohomology groups.

3. The functor (—)" is fully faithful when restricted to proper schemes over C.

4. If Z is a compact Riemann surface, there exists a smooth projective connected curve X/C with X" ~
Z.



1.2 In the rigid setting

Let k be a non-archimedean field. Then the story is very similar.

Definition 1.3. Let X be a finite type scheme over k. An analytification X" of X is a rigid analytic space
over k with functor of points

(Rigid analytic spaces) — (Sets)
7+ Hom(Z, X).

The Hom-set is taken in the category of locally G-ringed spaces.

By definition, an analytification of X is unique up to unique isomorphism if it exists and comes with a
natural map e: X% — X.

We now prove that X" exists for any X/k of finite type.
Lemma 1.4. Let X be an affine scheme of finite type over k and Z a rigid space. Then the natural map
Hom(Z, X) — Hom(O(X),0(Z)) is an isomorphism.

Proof sketch. We construct an inverse to the above natural map. Since Oy is a sheaf, we may assume that
Z is affinoid. So let X = Spec A and Z = Sp B, where A is a finitely generated k-algebra and B is a Tate
k-algebra. Then the inverse is given by sending ¢: A — B to Sp B — Spec A,m — ¢~ (m). O

We construct the analytification of A} explicitly. Let ¢ € k be an element with |c| > 1. Let T(c") = k{c™"x),
seen as a sub-algebra of T'(1) = k(z). The chain

S CT(*) CcT(c) CcT(1)
gives rise to a chain of inclusions of closed balls
D(1) c D(¢') c D(¢*) C ---
By glueing rigid analytic spaces, we obtain the rigid space A,lc’”‘g , the rigid analytic affine line.

Lemma 1.5. The rigid space Ai’”g is the analytification of A}

Proof. By Lemma we have to show that Hom(Z, A, ") = Oz(Z) for any rigid space Z. It suffices to
check this for Z = Sp A affinoid. Since Sp A4 is affinoid and the cover U,>oD(c") of Ay" is admissible,
any morphism Sp A — Ai’”g lands in D(c") for some n > 0. To such a morphism corresponds an element
f € Aof norm |f| < |c[*. Conversely, given an element f € A of norm |f| < |¢|”, there exists an associated
morphism Sp A — Ai’”g mapping into D(c™). Since any element of A is of norm < |¢|™ for some n > 0, this
completes the proof. O

Lemma 1.6. Suppose that X = Specklty,...,tn]/(f1,..., fx). Then X exists.

Proof. Let ¢ € k be an element with |¢| > 1. Let A,, = k{c™ax1,...,¢ "xn)/(f1,-.., fr) and Uy, = Sp A,y,.
By the same reasoning as Lemma @ X" = Upm>oUp, is the analytification of X. O
Proposition 1.7. Let X/k be of finite type. Then X*™ exists.



Proof. If X is affine, this follows from the previous lemma. To glue the affine patches, one needs the
following fact: if X has an analytification e: X" — X and U C X is an open subscheme, U%" = ¢~ 1(U) is
an analytification of U. O

This defines a functor:
(—)*": (Finite type schemes/k) — (Rigid analytic spaces/k).
Theorem 1.8. The functor (—)*" satisfies the same properties 1-4 as in the complex case.
Note that we have not defined what it means for a rigid space to be connected /reduced /smooth /separated

or proper. These definitions are straightforward, except for defining properness which requires some work.
The proof is probably very similar!

2 The Tate curve

2.1 The story of C

Let 7 be an element of the upper half plane H = {z € C | Im(z) > 0} and let A, = Z + Z7. Then C/A; is
the analytification of the elliptic curve E,/C with Weierstrass equation

y? =423 — g2(T)x — g3(7).
Here

1
g2(1) =60 Z e

AEA\{0}

1
gs(r) =140 3

AeA-\{0}

Explicitly, the map C — E.(C) is given by z — (p(z,7), ¢'(2, 7)), where p(z, 7) is the Weierstrass p-function
1 1 1
-5+ T (=)
AeA\{0}
and where ¢'(z, 7) is the derivative of p(z,7) with respect to z.

2miT

Since A, = A4, for all n € Z, we may introduce ¢ = e and write go, g3 as functions in g. After some

substitutions, we see that E is isomorphic to
E;:y* +ay=12% —asr — ap (2.1.1)
Where

n3n
a4:5zl_qqn = 5q +45¢% + 140¢° + . ..

n>1

7n® + 5n3 q" 9
= : =q+23 154¢% + ...
ag Z:l o g = 4230 + 15447 +



Miracle: the power series a4(q), ag(q) lie in Z[[q]].

Let A(q) be the discriminant of the above equation. It turns out that A(q) = ¢ (1 — ¢™)*.

Definition 2.1. We call the curve with Equation (2.1.1) the Tate curve. It is an elliptic curve over
Zl[g)][A ()]

2miz

Using the exponential map we see that C/A, ~ C* /¢”. Moreover |q| < 1 since 7 € H. Writing u = e
and writing p(z,7) and p/(z,7) in terms of u and ¢, we obtain:

Proposition 2.2. Let ¢ € C* with |q| < 1. Then the complex analytic space C*/q” is the analytifica-
tion of the elliptic curve E, given by Equation (2.1.1). The isomorphism is given by C* — E,(C),u

(X (u,q),Y (u,q)), where
Xa) =3 e 22 1o

neE”Z n>1 q”
Vi)=Y G+ Y
’ - _ Anqy\3 _n
o —qmu)® e 1—g

Moreover, every elliptic curve over C arises in this way.

2.2 The non-archimedean case

Let k£ be a p-adic field. The main point of the Tate curve is the following theorem, which does not need rigid
spaces to state.

Theorem 2.3. Let ¢ € k* be an element satisfying |q| < 1. Then a4(q),as(q) (defined in the previous
section) are elements of k, and Ey is an elliptic curve over k. There exists an isomorphism

kK /q" = By(k)
compatible with the Galois action on both sides. The curve Ey has split multiplicative reduction. Conversely,

any elliptic curve over k with split multiplicative reduction arises in this way, i.e. is of the form Ey for some
q.

Sketch of proof. Since aq,a6 € Z[[q]] and |q| < 1, it is clear that a4(q),as(q) converge to elements of k.
To write down an isomorphism k> /q? ~ E,(k), one writes down formulas for the isomorphism C*/¢% —
E,(C) using the Weierstrass p-function and see (amazingly!) that they still work. The curve E; has split
multiplicative reduction by reducing Equation . Moreover the j-invariant of E is the actual j-function
Jj(q) = ¢t + 744+ .... Tt is elementary that ¢ — j(g) induces a bijection

{ge k™ g <1} ={jek]lil>1}

Let E/k be an elliptic curve with split multiplicative reduction. Then [j(E)| > 1 so E is isomorphic to E,
over k for some ¢ € k with |q| < 1. Moreover |j(E)| > 1 implies that j(E) # 0 or 1728. Therefore E and
E, are quadratic twists of each other. Since there is a unique twist where the reduction is split, we conclude
that I/ ~ E, over k, as claimed. O

Corollary 2.4. Let E/k be an elliptic curve with split multiplicative reduction. Let 1l # p and let T)E be the
l-adic Tate module of E. Then there is a short exact sequence of Galois modules

1—-7Z(1) T\ E—7Z,— 1.

In other words, T)E has a Z;-basis in which the Galois action is of the form (g I), where x is the

cyclotomic character.



2.3 The Tate curve as a rigid space

Let ¢ € k with |g| < 1. We will now introduce a rigid space X, = G%fk/qz and upgrade the above theorem
to an isomorphism X, ~ Eg". We first need to talk about quotients of rigid spaces.

Definition 2.5. Let I' be a group acting freely and continuously on a rigid space X. We say the action is
properly discontinuous if there exists an admissible covering of the form {~v-U;}~er,icr of X withv-U;NU; = @
unless v =1 and such that the sets Uyery - U; are admissible for all i € I.

In the above situation, we can form the quotient ¥ = X/T". Indeed, to construct Y, by glueing it suffices to
give a cover by rigid spaces V;, admissible opens V;; C V; and comparison isomorphisms V; = Vi satisfying
some cocycle compatibility. We may take V; = U; and V;; = U; N (Uy-U;) and Vi; — Vj; the natural
isomorphism. One can check that this rigid space comes with a I-invariant map X — Y (where I' acts
trivially on V'), and that any I'-invariant map X — Z factors through X — Y.

We first explicitly write down G,',.. Since G,y k. = Spec k[u, v]/(uv — 1), we know by construction that G’
has an admissible cover

Unzo{lul, [v] < lg|™"} = Unxoflal" < |u] <lq/™"}.

More generally, if a < b are rational numbers let X[a,b] be the subset of G, given by {lg|” < u < |q|*}).
Then X|[a, ] is open affinoid. Moreover the above cover is UX[—n,n].

Let t4: Gy, — Goy be the multiplication by ¢ map. It sends X[a,b] to X[a + 1,b+ 1]. This defines a
Z-action on Gy which is free and continuous.

Lemma 2.6. This action is properly discontinuous.

Proof. We may take Uy = X[0,1/2] and Uy = X[1/2,1]. Then the cover {v-U;} = {X[n,n+1/2]}U{X[n+
1/2,n + 1]} is an admissible cover that satisfies the requirements for being properly discontinuous. O

It follows that the quotient X, = G%f o/ q” exists as a rigid space; write 7: G%f r — X, for the quotient map.

Explicitly, it is obtained by glueing X[0,1/2] and X[1/2, 1] along their boundary: X[0,0]UX[1/2,1/2] Lalld,

X[1,1]UX][1/2,1/2]. Using this description or the universal property of quotients, we see that the structure
sheaf of X is given by

Ox,(U) ={f € Ogz (x7'U) | t;f = [}

For example, Ox, (X,) consists of those element ) _, a,t" with |a,|p" — 0 as |n| — +o0 for all p > 0
satisfying a,, = ¢"a,. Therefore a,, = 0 if n # 0, so Ox, (X,) = k.

It is clear that for every finite field extension I/k we have X, (1) = 1*/q”.

Proposition 2.7. There exists an isomorphism X, ~ Eg" of rigid spaces.

Proof. The one used in the above theorem is analytic. O
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