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1 Analytification

1.1 Over the complex numbers

Definition 1.1. A complex analytic space is a locally ringed space (X,OX) such that for each x ∈ X there
exists an open U ⊂ X with the property that (U,OX |U ) is isomorphic to {v ∈ V | f1(v) = · · · = fk(v) = 0},
where V is an open subset of Cn and fi are complex analytic functions (in other words, holomorphic functions)
defined on V .

Let X be a finite type scheme over C. Then X is locally given by SpecC[t1, . . . , tn]/(f1, . . . , fk). It follows
that Xan := X(C), endowed with the analytic topology and analytic structure sheaf, is a complex analytic
space, called the analytification of X. Moreover, in the category of locally ringed spaces (in which both
schemes and complex analytic spaces fully faithfully embed), we have a morphism ε : Xan → X induced
by the inclusion Xan ⊂ X. Given any other complex analytic space Z and morphism Z → X, it uniquely
factors through Xan → X. We therefore find the following characterization of the analytification:

Lemma 1.2. Let X be a finite type scheme over C. Then the functor of points of Xan is given by

(Complex analytic spaces)→ (Sets)
Z 7→ Hom(Z,X).

The Hom-set is taken in the category of locally ringed spaces.

This defines a functor:

(−)an : (Finite type schemes/C)→ (Complex analytic spaces).

It has the following fundamental properties:

1. X is connected/reduced/smooth/separated/proper if and only if the same is true for Xan. (In more
common parlance, replace separated by Hausdorff and proper by compact.)

2. If X is proper, the functor F 7→ F an = ε∗F from coherent sheaves on X to coherent sheaves on Xan

is an equivalence and induces an isomorphism on sheaf cohomology groups.

3. The functor (−)an is fully faithful when restricted to proper schemes over C.

4. If Z is a compact Riemann surface, there exists a smooth projective connected curve X/C with Xan '
Z.
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1.2 In the rigid setting

Let k be a non-archimedean field. Then the story is very similar.

Definition 1.3. Let X be a finite type scheme over k. An analytification Xan of X is a rigid analytic space
over k with functor of points

(Rigid analytic spaces)→ (Sets)
Z 7→ Hom(Z,X).

The Hom-set is taken in the category of locally G-ringed spaces.

By definition, an analytification of X is unique up to unique isomorphism if it exists and comes with a
natural map ε : Xan → X.

We now prove that Xan exists for any X/k of finite type.

Lemma 1.4. Let X be an affine scheme of finite type over k and Z a rigid space. Then the natural map
Hom(Z,X)→ Hom(O(X),O(Z)) is an isomorphism.

Proof sketch. We construct an inverse to the above natural map. Since OZ is a sheaf, we may assume that
Z is affinoid. So let X = SpecA and Z = SpB, where A is a finitely generated k-algebra and B is a Tate
k-algebra. Then the inverse is given by sending φ : A→ B to SpB → SpecA,m 7→ φ−1(m).

We construct the analytification of A1
k explicitly. Let c ∈ k be an element with |c| > 1. Let T (cn) = k〈c−nx〉,

seen as a sub-algebra of T (1) = k〈x〉. The chain

· · · ⊂ T (c2) ⊂ T (c) ⊂ T (1)

gives rise to a chain of inclusions of closed balls

D(1) ⊂ D(c1) ⊂ D(c2) ⊂ · · ·

By glueing rigid analytic spaces, we obtain the rigid space A1,rig
k , the rigid analytic affine line.

Lemma 1.5. The rigid space A1,rig
k is the analytification of A1

k

Proof. By Lemma 1.4, we have to show that Hom(Z,A1,rig
k ) = OZ(Z) for any rigid space Z. It suffices to

check this for Z = SpA affinoid. Since SpA is affinoid and the cover ∪n≥0D(cn) of A1,rig
k is admissible,

any morphism SpA → A1,rig
k lands in D(cn) for some n ≥ 0. To such a morphism corresponds an element

f ∈ A of norm |f | ≤ |c|n. Conversely, given an element f ∈ A of norm |f | ≤ |c|n, there exists an associated
morphism SpA→ A1,rig

k mapping into D(cn). Since any element of A is of norm ≤ |c|n for some n ≥ 0, this
completes the proof.

Lemma 1.6. Suppose that X = Spec k[t1, . . . , tn]/(f1, . . . , fk). Then Xan exists.

Proof. Let c ∈ k be an element with |c| > 1. Let Am = k〈c−mx1, . . . , c
−mxn〉/(f1, . . . , fk) and Um = SpAm.

By the same reasoning as Lemma 1.6, Xan = ∪m≥0Um is the analytification of X.

Proposition 1.7. Let X/k be of finite type. Then Xan exists.
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Proof. If X is affine, this follows from the previous lemma. To glue the affine patches, one needs the
following fact: if X has an analytification ε : Xan → X and U ⊂ X is an open subscheme, Uan = ε−1(U) is
an analytification of U .

This defines a functor:

(−)an : (Finite type schemes/k)→ (Rigid analytic spaces/k).

Theorem 1.8. The functor (−)an satisfies the same properties 1-4 as in the complex case.

Note that we have not defined what it means for a rigid space to be connected/reduced/smooth/separated
or proper. These definitions are straightforward, except for defining properness which requires some work.
The proof is probably very similar!

2 The Tate curve

2.1 The story of C

Let τ be an element of the upper half plane H = {z ∈ C | Im(z) > 0} and let Λτ = Z + Zτ . Then C/Λτ is
the analytification of the elliptic curve Eτ/C with Weierstrass equation

y2 = 4x3 − g2(τ)x− g3(τ).

Here

g2(τ) = 60
∑

λ∈Λτ\{0}

1

λ4
,

g3(τ) = 140
∑

λ∈Λτ\{0}

1

λ6
.

Explicitly, the map C→ Eτ (C) is given by z 7→ (℘(z, τ), ℘′(z, τ)), where ℘(z, τ) is the Weierstrass ℘-function

℘(z, τ) =
1

z2
+

∑
λ∈Λτ\{0}

(
1

(z − λ)2
− 1

λ2

)
and where ℘′(z, τ) is the derivative of ℘(z, τ) with respect to z.

Since Λτ = Λτ+n for all n ∈ Z, we may introduce q = e2πiτ and write g2, g3 as functions in q. After some
substitutions, we see that Eτ is isomorphic to

Eq : y2 + xy = x3 − a4x− a6 (2.1.1)

Where

a4 = 5
∑
n≥1

n3qn

1− qn
= 5q + 45q2 + 140q3 + . . .

a6 =
∑
n≥1

7n5 + 5n3

12
· qn

1− qn
= q + 23q2 + 154q3 + . . .
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Miracle: the power series a4(q), a6(q) lie in Z[[q]].

Let ∆(q) be the discriminant of the above equation. It turns out that ∆(q) = q
∏

(1− qn)24.

Definition 2.1. We call the curve with Equation (2.1.1) the Tate curve. It is an elliptic curve over
Z[[q]][∆(q)−1].

Using the exponential map we see that C/Λτ ' C×/qZ. Moreover |q| < 1 since τ ∈ H. Writing u = e2πiz

and writing ℘(z, τ) and ℘′(z, τ) in terms of u and q, we obtain:

Proposition 2.2. Let q ∈ C× with |q| < 1. Then the complex analytic space C×/qZ is the analytifica-
tion of the elliptic curve Eq given by Equation (2.1.1). The isomorphism is given by C× → Eq(C), u 7→
(X(u, q), Y (u, q)), where

X(u, q) =
∑
n∈Z

qnu

(1− qnu)2
− 2

∑
n≥1

nqn

1− qn

Y (u, q) =
∑
n∈Z

(qnu)2

(1− qnu)3
+
∑
n≥1

nqn

1− qn

Moreover, every elliptic curve over C arises in this way.

2.2 The non-archimedean case

Let k be a p-adic field. The main point of the Tate curve is the following theorem, which does not need rigid
spaces to state.

Theorem 2.3. Let q ∈ k× be an element satisfying |q| < 1. Then a4(q), a6(q) (defined in the previous
section) are elements of k, and Eq is an elliptic curve over k. There exists an isomorphism

k̄×/qZ ' Eq(k̄)

compatible with the Galois action on both sides. The curve Eq has split multiplicative reduction. Conversely,
any elliptic curve over k with split multiplicative reduction arises in this way, i.e. is of the form Eq for some
q.

Sketch of proof. Since a4, a6 ∈ Z[[q]] and |q| < 1, it is clear that a4(q), a6(q) converge to elements of k.
To write down an isomorphism k̄×/qZ ' Eq(k̄), one writes down formulas for the isomorphism C×/qZ →
Eq(C) using the Weierstrass ℘-function and see (amazingly!) that they still work. The curve Eq has split
multiplicative reduction by reducing Equation (2.1.1). Moreover the j-invariant of Eq is the actual j-function
j(q) = q−1 + 744 + . . . . It is elementary that q 7→ j(q) induces a bijection

{q ∈ k× | |q| < 1} → {j ∈ k | |j| > 1}.
Let E/k be an elliptic curve with split multiplicative reduction. Then |j(E)| > 1 so E is isomorphic to Eq
over k̄ for some q ∈ k with |q| < 1. Moreover |j(E)| > 1 implies that j(E) 6= 0 or 1728. Therefore E and
Eq are quadratic twists of each other. Since there is a unique twist where the reduction is split, we conclude
that E ' Eq over k, as claimed.

Corollary 2.4. Let E/k be an elliptic curve with split multiplicative reduction. Let l 6= p and let TlE be the
l-adic Tate module of E. Then there is a short exact sequence of Galois modules

1→ Zl(1)→ TlE → Zl → 1.

In other words, TlE has a Zl-basis in which the Galois action is of the form
(
χ ∗
0 1

)
, where χ is the

cyclotomic character.
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2.3 The Tate curve as a rigid space

Let q ∈ k with |q| < 1. We will now introduce a rigid space Xq = Ganm,k/qZ and upgrade the above theorem
to an isomorphism Xq ' Eanq . We first need to talk about quotients of rigid spaces.

Definition 2.5. Let Γ be a group acting freely and continuously on a rigid space X. We say the action is
properly discontinuous if there exists an admissible covering of the form {γ·Ui}γ∈Γ,i∈I of X with γ·Ui∩Ui = ∅
unless γ = 1 and such that the sets ∪γ∈Γγ · Ui are admissible for all i ∈ I.

In the above situation, we can form the quotient Y = X/Γ. Indeed, to construct Y , by glueing it suffices to
give a cover by rigid spaces Vi, admissible opens Vij ⊂ Vi and comparison isomorphisms Vij

∼−→ Vji satisfying
some cocycle compatibility. We may take Vi = Ui and Vij = Ui ∩ (∪γ · Uj) and Vij → Vji the natural
isomorphism. One can check that this rigid space comes with a Γ-invariant map X → Y (where Γ acts
trivially on Y ), and that any Γ-invariant map X → Z factors through X → Y .

We first explicitly write down Ganm,k. Since Gm,k = Spec k[u, v]/(uv− 1), we know by construction that Ganm,k
has an admissible cover

∪n≥0{|u|, |v| ≤ |q|−n} = ∪n≥0{|q|n ≤ |u| ≤ |q|−n}.

More generally, if a ≤ b are rational numbers let X[a, b] be the subset of Ganm,k given by {|q|b ≤ u ≤ |q|a}.
Then X[a, b] is open affinoid. Moreover the above cover is ∪X[−n, n].

Let tq : Ganm,k → Ganm,k be the multiplication by q map. It sends X[a, b] to X[a + 1, b + 1]. This defines a
Z-action on Ganm,k which is free and continuous.

Lemma 2.6. This action is properly discontinuous.

Proof. We may take U0 = X[0, 1/2] and U1 = X[1/2, 1]. Then the cover {γ ·Ui} = {X[n, n+ 1/2]}∪{X[n+
1/2, n+ 1]} is an admissible cover that satisfies the requirements for being properly discontinuous.

It follows that the quotient Xq = Ganm,k/qZ exists as a rigid space; write π : Ganm,k → Xq for the quotient map.

Explicitly, it is obtained by glueing X[0, 1/2] and X[1/2, 1] along their boundary: X[0, 0]tX[1/2, 1/2]
tqtId−−−→

X[1, 1]tX[1/2, 1/2]. Using this description or the universal property of quotients, we see that the structure
sheaf of Xq is given by

OXq (U) = {f ∈ OGanm,k(π−1U) | t∗qf = f}

For example, OXq (Xq) consists of those element
∑
n∈Z ant

n with |an|ρn → 0 as |n| → +∞ for all ρ > 0
satisfying an = qnan. Therefore an = 0 if n 6= 0, so OXq (Xq) = k.

It is clear that for every finite field extension l/k we have Xq(l) = l×/qZ.

Proposition 2.7. There exists an isomorphism Xq ' Eanq of rigid spaces.

Proof. The one used in the above theorem is analytic.

5


	Analytification
	Over the complex numbers
	In the rigid setting

	The Tate curve
	The story of C
	The non-archimedean case
	The Tate curve as a rigid space


