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• The main thing that makes Berkovich spaces a good candidate for our non-archimedean space is that
they have very nice topological properties.

• Doubley nice is that not only are they good topological spaces, but their topology often reflects what
the topology of the underlying variety should be (ie: Hausdorff, proper varieties give us compact
Berkovich spaces, etc).

• Tripley nice is that they have good homotopy types, and moreover, in certain cases, we have a model
for their homotopy types.

I should mention that model theory is a seriously powerful tool when working with Berkovich Spaces, and
a lot of results are down to Hrushikov and Loeser, who did a very model theoretic paper where they proved
some big statements. For those of you who’ve run into model theory results before, the style of argument is
just so different to algebraic geometry and number theory, and relies on a hugely different background, so I
won’t go into those proofs, and I’ll only mention the results, then in some cases prove a weaker statement
without the model theory.

1 Analytification

Definition 1.1. A good Berkovich space is a locally ringed space, (X,OX) such that locally (X,OX) looks
like (M(AV ),OAV ) for AV an affinoid algebra.

This is Berkovich’s original definition of a Berkovich space. It was later refined to include spaces that
you can piece together via charts, which is a more analytic outlook, but since all analytifications of varieties
are “good Berkovich spaces”, I’ll restrict to these for today.

Jef mentioned that the whole point of analytification is the following. If X is a scheme, then Xan is a
Berkovich space with a map Xan → X, such that if Z is any Berkovich space, with Z → X a map of locally
ringed spaces, then there is a unique map Z → Xan such that the obvious diagram commutes.

That is: Xan is the the object of the category of Berkovich spaces that represents the functor HomLRS(−, X).
This is kind of the point of them, and is arguably the best way to think about them, but doesn’t really give
us anything workable. It’s also not clear that it exists, so I’ll sketch how you construct it, which also gives
us a description of the topological space.

From here, I’ll fix k to be a non-archimedean valued field, F its residue field, and v its norm. For a k
algebra, A, note that {multiplicative seminorms on A extending the valuation on k} is the same as the set
{(x,w) : x ∈ Spec(A), v a norm on κ(x) extending v}. This is because if w : A → R is a multiplicative
seminorm, then ker(w) is a prime ideal, and w : A/ker(w)→ R is an actual norm.

We now sketch the construction of analytifications for general k varieties. (Proof taken from Wouter
Zomervrucht’s notes)

1. Case 1. X = Ank . We have a candidate for the affinoid atlases: Xan = An,ank = {multiplicative seminorms on k[T1, . . . , Tn]}.
Moreover, the map Xan → X is given by w 7→ ker(w). We also see that this is given the weakest topol-
ogy such that An,ank → Ank is continuous, and for every f ∈ k[T1, . . . , Tn], the map | · |x 7→ |f |x is also
continuous.
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2. Case 2: suppose that S is a k variety such that π : San → S exists, and let T → S be an open
embedding. Then T an = π−1(T ) is a Berkovich space, and we can see easily that T an → T is a
Berkovich analytification, by universal properties.

3. Case 3: T ⊆ S closed and π : San → S exists. Let I be the sheaf of OS ideals defining T . Then
π∗I is a sheaf of OSan ideals, which defines a closed subspace, T an. We can see T an → T , and it is a
berkovich analytification.

4. Case 4. If S is affine, then S is a closed subscheme of An for some n, so result holds by 1 and 3. The
result then holds by gluing as in case 2.

Remark 1.2. For the purposes of this talk, I’m restricting to the variety case, so that X → Spec(k) is finite
type and separated. Analytification holds in more general contexts, but the description of the topological
space doesn’t work as nicely.

Remark 1.3. By our description of case 3, we can see that ifX = Spec(A), thenXan = {multiplicative seminorms on A extending the norm on k}.
From earlier, we know that we can describe this as

{(x,w) : x ∈ X,w : κ(x)→ R≥0 extending v}.

Moreover, by our calculations on affine space, we see the topology on Xan is the weakest topology such that
Xan → X is continuous, and for all f ∈ A, the map (x,w) 7→ w(f(x)) is also continuous.

By the gluing case above, we can see that this definition generalises. That is, let X be a variety over k.
Then Xan as a topological space is the set

{(x,w) : x ∈ X,w : κ(x)→ R≥0 extending v}.

Then the map Xan → X is given by (x,w) 7→ x. The topology on Xan is the weakest such that Xan → X
is continuous, and for all U ⊆ X open and for all f ∈ OX(U), the map

Uan → R≥0

(x,w) 7→ w(f(x)),

is also continuous. From here, we’ll adopt this as an alternative definition of the analytification.

Remark 1.4. It is possible to show Xan → X is surjective as a map of sets, though this takes some work
and applications of Zorn’s lemma.

2 Properties of Berkovich analytifications

We’d like to show that topological properties of the Berkovich analytifications.

Theorem 2.1. Let A be a finitely generated k algebra. Then Spec(A)an is an Hausdorff.

Proof. Let x, y ∈ Spec(A)an, and think of x, y as multiplicative seminorms. Then there exists f ∈ A such
that |f |x 6= |f |y. Let r be such that |fx| < r < |f |y, and let U = {x ∈ Spec(A)an : |f |x < r} and
U ′ = {x ∈ Spec(A)an : |f |x > r}. This gives the result.

Therefore, Xan is locally Hausdorff.

Lemma 2.2. Let X/k be a variety. Then Xan is separated.

Proof. Note, Xan is separated if and only if the diagonal subset is closed in in Xan × Xan. It’s a quick
computation that Xan × Xan = (X ×k X)an. Note that X → X ×k X is a closed immersion, since X is
separated. By the definitions of our analytifications earlier, analytification preserves closed immersions, so
this holds.

Corollary 2.3. Xan is Hausdorff.
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Proof. Locally Hdorff + separated.

]

Lemma 2.4. Let ϕ : X → Y be a morphism of k varieties. Then X → Y is surjective implies that
ϕan : Xan → Y an is surjective.

Proof. Let π : Xan → X. Let x ∈ Xan. Then we see that k(π(x)) = OX,πx/mπ(x) is naturaly embedded in
the residue field at x, M(x), and there is an isomorphism:

(Y an)x ∼= (π(x)⊗k(π(x)) M(x))an.

We know that ϕ is surjective if and only if the fibres are non empty. Therefore ϕan is surjective if and only
if ϕ is.

Lemma 2.5. Let X/k be proper. Then Xan is compact.

Proof. It is a standard computation to see that (Pnk )an is compact (we have a pretty explicit description)
If X is projective, then we can show that Xan is compact, since there is a closed immersion Xan → (Pnk )an

and (Pnk )an is compact. For arbitrary X, Chow’s lemma tells us that there exists a projective variety X ′/k,
and a projective, surjective, morphism ψ : X ′ → X. We then have that (X ′)an is compact by the earlier
work, and (X ′)an → Xan is surjective, therefore Xan is compact.

NB: The results sketched above hold in much more generality. In fact you can show that f : X → Y
is flat/unramified/smooth/separated/injective/surjective/open immersion/finite type if and only if fan is.
Moreover, if f is of finite type, then f is dominant/closed immersion/proper if and only if fan is.

Lemma 2.6. Every connected Berkovich space is arcwise connected. That is: for x, y distinct points, there
is a homeomorphism ϕ : [0, 1]→ X with ϕ(0) = x and ϕ(1) = y.

Sketch. For simplicity, assume that every point x ∈ X has an affinoid neighbourhood (eg: analytification),
so we can assume that X is k-affinoid, and by extending the ground field, we can assume that XK is striclty
K affinoid. Since XK → X is surjective, we only need to check that it is path connected.

We can then use Noether normalisation to assume that X = Enk is the unit polydisc (since there is a
finite map X → Enk , so Enk path connected implies X is.)

We can then show that Enk is pathwise connected. For n = 1, Ek is a tree, so that’s alright. If n > 1, we
project π : Enk → En−1

k . Then the fibre over x ∈ En−1
k is isomorphic to E1

κ(x). Note that we have a section

of this projection: σ : En−1
k → Enk , which maps x ∈ En−1

k to (T ) ∈ E1
κ(x) =M(κ(x){T}).

Let y0, y1 ∈ Enk . Let xi = σ(π(yi)). The path from y1 to y2 is given by the collective paths y1 → x1 →
x2 → y2, which exist by induciton.

The actual proof is hard and long.
The other main topological result, I’ll only mention and won’t even sketch.

Theorem 2.7. Berkovich spaces are locally contractible.

For smooth Berkovich spaces (eg: Xan where X is a smooth space), this was proven by Berkovich in his
paper ”smooth p-adic analytic spaces are locally contractible”, and given the name of the paper, it’s a bit
much to cover in this talk). In general, this was proven by Hrushikov and Loeser, but the proof is incredibly
model theoretic.

Also mention this one http://www-math.mit.edu/~poonen/papers/berkovich.pdf, but again probably
very model theoretic.
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3 Skeleta and homotopy types

I mentioned at the beginning that these spaces have nice homotopy types. The main theorem in this area is
actually this one by Hrushikov and Loeser.

Theorem 3.1 (Theorem 14.2.1 of Hrushikov Loeser). Let X/k be a variety, and let Xan be its Berkovich
skeleton. Then there exists a subset of Xan, S such that S is homeomorphic to a finite simplicial complex.
Moreover, there is a strong deformation retraction from Xan onto S.

Double moreover, if G is a finite group acting on X, this can be made G equivariant.

This theorem is very model theoretic in Hrushikov Loeser, and the proof isn’t constructive and is based
around model theory. Instead today, we’ll give a construction of S in certain cases, and sketch a proof for
this S.

Definition 3.2. Let X/o be a model for X/k. We say X is sncd if the special fibre is a strict normal
crossings divisor of the model.

Definition 3.3. Let X/k be a variety and X/o be a model. Let x ∈ Xan, so that v is a valuation on κ(y)
where x = (y, v). Let ox denote the valuation ring at x. Then define center(x), if it exists, to be the unique
point that is the image of the closed point of the map Spec(ox)→ X that maps the generic point to y. Note
center(x) always lies on the special fibre, by the definition of our valuations.

Definition 3.4. Let X/o be a model of X/k, and let E be an irreducible component of the special fibre
with generic point ξ. Note that center−1

X (ξ) corresponds to a unique point, which we call the divisorial point
associated to (X , E). This is because we see that OX ,ξ is a valuation ring on K, so gives us w ∈ Valv(K), and
since dim(OX ,ξ) = 1, it cannot strictly contain another valuation ring, so it must correspond to a valuation
of rank 1.

We can explicitly describe the valuation as follows. Fix X and E, and let w ∈ Xan be a divisorial point
associated to (X , E). Let n denote the multiplicity of E in the divisor Xk on X , and let f ∈ OX ,ξ. Then we
exactly have

w(f) =
1

n
ordE(f).

In general, we say x ∈ Xan is divisorial if it is the divisorial point associated with some pair like above.

Let X/o be an sncd model of X, and let E1, . . . , Er be distinct irreducible components of the special
fibre with multiplicities N1, . . . , Nr. Suppose

⋂r
i=1Ei is non empty, and let α = (α1, . . . , αr) be such that∑r

i=1 αiNi = 1.
Let ξ be a generic point of

⋂r
i=1Ei, which, by definition of sncd, is regular and of pure dimension n+1−r.

Proposition 3.5. There exists a unique real valuation

w : K× → R

with valuation ring OX ,ξ, such that w(Ti) = αi for every i, and Ti = 0 for Ei in X at ξ, where Ti is a a
function such that locally Ei = {Ti = 0}. Moreover, w is independent of the choice of Tis, and w|k = v.

We’ll prove this proposition slightly later. The proof is very long and commutative algebra.

Definition 3.6. We say that v is a monomial point if v is a monomial point associated with (X , E1, . . . , Er, α, ξ)
for some choice of this data.

If you have monomial points x, x′ corresponding to (X , A), (X ′, A′) (where A,A′ are the rest of the data),
we can always assume that X = X ′, since the category of sncd models is cofiltered, so we can go to a model
that dominates both X and X ′.

Remark 3.7. The idea behind that is that, by varying these αs, we can interpolate between divisorial
points. This is important later when we introduce the skeletons.

The resk of this subsection is dedicated to the proof, and is largely commutative algebra.
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Lemma 3.8. Let A be a noetherian local ring with maximal ideal m and residue field κ. Let (y1, . . . , ym) be
a system of generators for mA. Let y1, . . . , ym be a system of generators for m, and let Â denote the m-adic
completion of A. Let B be a subring of A such that y1, . . . , ym belong to B and generate B ∩m. Then in Â,
every element of B, can be written as

b =
∑
β∈Zm≥0

cβy
β

where each cβ is either 0 or a unit of A contained in B.

Proof. Let b ∈ B. Since A is local, either b ∈ A× (and we’re done) or b ∈ m. In the second case, we can
write b as a B-linear combination of y1, . . . , ym.

Suppose i is a positive integer, and we can write every b ∈ B as a sum of an element bi of the required
form, and a B linear combination of degree i monomials in the elements y1, . . . , ym, so that

b = bi +
∑

βff(y1, . . . , ym)

where the sum runs over all f a degree i monomials, and each βf ∈ B. Note each βf is either in A× or is in
m, so can be written as βf =

∑
βf,iyi where βf,i ∈ B. This means that we can write b as the sum of some

bi+1 of the form required, and a B linear combination of degree i+ 1 monomials in y1, . . . , ym such that fi
and fi+1 have the same coefficients in degree < i.

Repeating this construction, we get an expansion for b in the required form.

Proof of proposition 3.5. If w has these properties, then by taking A = B = ÔX ,ξ, we see that each f =∑
fβT

β , and since each fβ is a unit, this tells us that w(f) =
∑
β∈Zm βiαi. Moreover, if π is a uniformiser

for o, we can write π = u
∏r
i=1 T

Ni
i (by definition of our Ti), so that w(π) = 1, and so w extends v.

We first need to show that w is well defined.
Let A = ÔX ,ξ, and let m,κ its maximal ideal and residue field. Then to every expansion of the form in

the previous lemma, we can associate a newton polyhedron Γ, which is the convex hull of the set

{β ∈ Zr≥0 : cβ 6= 0}+ Rr≥0 ⊆ Rr.

Let Γc denote the set of points in Zr≥0 that lie on a compact face of Γ, and let

bc :=
∑
β∈Γc

cβz
β

where cβ denotes its image in the residue field.
Therefore, bc is an element of κ[z1, . . . , zr]. We claim that it depends only on b, not on the way in which

we write this expansion.
Let b =

∑
β∈Zr c

′
βz
β be another admissible expansion of b, with associated set Γ′c and b′c. Then∑

β

(cβ − c′β)zβ = 0.

Choosing admissible expansions for cβ − c′β that don’t lie in A× ∪ {0} means we can write this as an
expansion

0 =
∑
β

dβz
β

where each dβ = cβ − c′β for all β ∈ Γc ∪ Γ′c.

Note that
⊕

i≥0 m
i/mi+1 is isomorphic to the polynomial rin gover κ in the residue classes of z1, . . . , z2

modulo m2. Therefore, we see that each dβ must be 0, since
∑
dβz

β = 0 in some polynomial ring. Therefore,
Γc = Γ′c and bc = b′c, so w doesn’t depend on our choice of admissible expansion.

Now, let m = min{α · β : β ∈ Γc : cβ 6= 0} (where α = (α1, . . . , αr), and · denotes the dot product in
Rn), and let Γαc the points β ∈ Γc such that αβ = m.
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Let
fα =

∑
β∈Γαc

cβz
β ∈ κ[z1, . . . , zr].

Then we see that m and fα are entirely determined by fc and Γc, so don’t depend on our admissible expansion
for f . Moreover, we see that

vα(b) = min{αβ : α ∈ Γc, cβ 6= 0} = m.

We now claim that vα is a valuation. If f, g are non zero elements then vα(+g) ≥ min{vα(f), vα(g)}, and
moreover vα(fg) = vα(f) + vα(g), since (fg)α = fαgα.

Moreover, since z1, . . . , zr are determined (up to a unit) in OX ,ξ, it’s easy to see vα(f) doesn’t depend

on our choice z1, . . . , zr. Moreover, since π = uzN1
1 . . . zNrr , we get vα(π) =

∑r
i=1 αiNi = 1, so vα extends

the p-adic valuation.

Proposition 3.9. Let x be a monomial point of Xan. Then TFAE:

1. The point x is divisorial.

2. The valuation vx is discrete.

3. The space Xan has rational rank 1 at x

Proof. We clearly have 1 ⇒ 2 ⇒ 3, so let x ∈ Xan have rational rank 1. Let (X , (Ei), ξ) and α ∈ Rr≥0 be
the data representing x. Since Xan has rational rank 1, we can assume that α ∈ Qr.

Permuting the indices, let α1 be the minimal index. Consider the blow up h : X ′ → X along the closure
of ξ, and let E′i denote the strict transform of Ei for all i 6= 1. Let E′1 denote the exceptional divisor of the
blow up. Let ξ′ be the generic point of E′1 ∩ . . . E′r. Then a relatively straightforward computation shows us
that

(X ′, (E′i), ξ′), α′ = (α1, α2 − α1, . . . , αr − α1)

is monomial data for the point x. Moreover, we can clearly eliminate the zero entries in α′ and their
associated E′i component.

Since the rational rank at x is equal to 1, all the αi are integer multiplies of a common rational number
q > 0. An induction of a basic argument tells us that after a finite number of steps, all of the αi are 0
except for 1. Therefore, repeating this finitely many times, we get a monomial presentation with r = 1, ie,
a divisorial presentation for x.

4 Skeleta

Definition 4.1. Let X be an sncd model of X. Then the Berkovich skeleton associated to X is the set of
monomial points that are associated to (X , E1, . . . , Er, α, ξ) for some E1, . . . , Er, α, ξ.

The big theorem about skeleta is the following.

Theorem 4.2. Suppose X is proper and X is a proper sncd model, the inclusion Sk(X )→ X is a homotopy
equivalence.

We won’t prove this theorem, as it involves a lot of technical and awkward birational geometry, but we
will characterise Sk(X ) more easily.

Definition 4.3. Let X be an sncd model for X. Write XF =
∑
i∈I NiEi, where Ei are the connected

components of XF. For J a non empty subset of I, let EJ =
⋃
i∈J Ei.

Then the dual complex of Xk is a “simplicial complex” whose simplicies of dimension d are given by
π0(EJ), where J runs through the subsets of I of cardinality d+ 1, glued together in the obvious way. NB:
This is a “simplicial complex” rather than strictly a simplicial complex as we allow multiple edges between
two vertices, however, since we’re only concerned with the topological realisation, this is somewhat easy.

Explicitly: if J, J ′ are non empty subsets of I, and C,C ′ are connected components of J, J ′ respectively,
then the simplex corresponding to C is a face of the simplex corresponding to C ′ if and only if C ⊆ C ′. We’ll
also write νi to mean the vertex of ∆(Xk).
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We’ll write ∆(Xk) to mean this, and we’ll call it the dual complex. Write |∆(Xk)| for its topological
realisation.

In this way, the dual complex is a generalisation of the dual graph.
There is a natural map Φ : |∆(Xk)| → Sk(X ). This map is defined by first sending νi to the monomial

point associated with (X , Ei), and we extend this to a map on all of |∆(Xk)| by interpolating in the fashion
below.

Let y ∈ |∆(Xk)|. Then there exists a unique face, τ , such that y lies in the interior of τ . By construction,
τ corresponds to C, a connected component of EJ . Let ξτ be the generic point of C.

The vertices of τ are the irreducible components, Ei with i ∈ J , so we can represent y by β ∈ RJ ,
where each βi ≥ 0 and

∑
i∈J βi = 1. Therefore, define Φ(y) as the monomial point associated with

(X , (Ei)i∈J , (βi/Ni)i∈J , ξτ ).

Lemma 4.4. The map defined above, Φ, is a bijection.

Proof. Let x ∈ Sk(X ), so that x corresponds to a valuation vx. Then centerX (x) is a generic point ξ of EJ
for some J . For each i ∈ J , choose a local equation Ei = {Ti = 0} where Ti ∈ OX ,ξ. Set αi = vx(Ti).

Then Φ−1(x) lies in the interior of the face τ corresponding to the connected component of ξ in EJ , and
its barycentric co-ordinates are equal to (αiNi)i∈J .

Theorem 4.5. The map defined above, Φ, is a homeomorphism.

Proof. Note since |∆(Xk)| is a simplicial complex, it’s compact, and the target is Hausdorff. Therefore, we
only need to show that it’s continuous (since it is already a bijection).

Let U be an open subscheme of X , and let ∆(Uk) be the simplicial set associated to Uk)red. Note then
that Uk → Xk is an open immersion, and induces a closed embedding |∆(Uk)| → |∆(Xk)|. Moreover, covering
X by finitely many Us means that |∆(Uk)|s form a closed cover. Therefore, we can assume that X is affine.

By definition of the Berkovich topology on Xan, all we have to prove is that for every regular function
on X, the map

|∆(Xk)| → R≥0

x 7→ |f(Φ(x))|

is continuous. This follows by the fact that the valuations vα from the proof of proposition 3.5 are continuous
in α.

Let X be proper, and let x ∈ Xan with valuation vx.. We want to come up with a map X → Sk(X ).
Let J be the set of i ∈ I such that centerX (x) ∈ Ei. Let C be the connected component of EJ containing x
with generic point ξ. For i ∈ J , choose a local equation Ti = 0 for Ei in X at center(x), and let αi = vx(Ti)
(where we think of Ti as the image of Ti inside the residue field at x). Let αi = vx(Ti). Then our retraction
ρX (x) is the monomial point associated to

(X , (Ei)i∈J , (αi)i∈J , ξ).

It has the property such that it is the unique point, y of Sk(X ), such that center(x) is contained in the
closure of center(y), and y gives the same valuation to each local defining equation of Ei as x does. Again,
it’s somewhat easy to verify that ρX is continuous.

It turns out that ρX is the “end product” of our strong deformation retract. Proving that this is a strong
deformation retract is a bit much for this talk
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