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Chapter 1

Introduction

This master’s thesis is initially motivated by the hope that the rich theory of Shimura varieties also
exists in a non-archimedean setup. To be more precise we recall a part of the classic setup:

Definition. Let G be a reductive group over R and X a conjugacy class of homomorphisms
h : S→ G. We state the following axioms:

1. SV1: The adjoint representation on Lie(G)C is of type (1,−1), (0, 0), (−1, 1).

2. SV2: ad(h(i)) is a Cartan involution of Gad.

Remark. From now on we will call a pair (G,X) a Shimura datum, if it fulfills SV1 and SV2. Note
that the classical definition has an additional condition, which we will not consider.

On the non-archimedean side we find in [RV14, Definition 5.1.] the definition a local Shimura
datum.

Definition 1.0.1. Let F/Qp be a finite extension and G a reductive group over F . A local Shimura
datum is a triple (G, b, {µ}), where b ∈ B(G,F ) and µ is a geometric conjugacy class, such that

1. {µ} is minuscule

2. b ∈ B(G, {µ}).

Kottwitz introduced the pointed set B(G) defined in terms of a reductive group G over a finite
extension F/Qp in 1985 (cf. [Kot85]). In a recent paper the construction of B(G) was generalized
to a reductive group G over any global or local field F (cf. [Kot14]).

Thus one might replace the non-archimedean local field in the above definition of a local Shimura
datum by R. Obviously we would like to recover the classical definition of a Shimura datum. This
leads to the following conjecture;

Conjecture 1. Let G be a reductive group over R and X be a conjugacy class of homomorphisms
h : S→ G. There is a 1:1 correspondence:{

(G,X)
fulfilling SV1 and SV2

}
←→

{
a minuscule conjugacy class µ : Gm → GC,

b ∈ B(G,R)bsc , κG(b) = µ + other conditions...

}

In this thesis we will define a map and explain how to possibly achieve such a bijection. An
essential tool connecting the above notions is given by G-bundles on P̃1

R, the twistor P1, which one
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can think of as the real analogue of the Fargues-Fontaine curve. Indeed we will prove in Chapter
4 the following;

Theorem. There exists an essentialy surjective functor

E : IsocR → Bun
P̃1
R
.

This will classify vector bundles on P̃1
R as direct sum of certain vector bundles denoted by O

P̃1
R
(λ)

for λ ∈ 1
2Z. Via Tannakian formalism we will be able to generalize this theorem in Chapter 5;

Theorem. There exists a bijection

B(G,R) ∼= H1
ét(X,G).

Thus G-bundles up to isomorphism are exactly given by elements in B(G,R). In Chapter 6 we
extend this classification motivated by the following theorem;

Theorem. [Sch18, Proposition 6.1] The category of U(1)-equivariant semistable vector bundles on
P̃1
R is equivalent to the category of pure R-Hodge structures.

to the following theorem;

Theorem. There exists a 1:1 correspondence

{basic elements Hom⊗(RepR(G),RepR(S))} {U(1)-equivariant semistable G-bundles on X}.

Evidently the left hand side is connected to the classical notion of a Shimura datum. Namely such
tensor exact functors are equivalent to morphisms h : S → H, where H in an inner form of G. In
the last chapter we collect all the results to first define a map{

(G,X)
fulfilling SV1

}
−→

{
a minuscule conjugacy class µ : Gm → GC,

b ∈ B(G,R)bsc , κG(b) = µ

}
(1.1)

which we conjecture to be injective, if we additionaly assume that SV2 if fulfilled. Via the flag
variety FlG,µ(C) we will construct certain semistable U(1)-equivariant bundles as modifications of
the trivial bundle at ∞ ∈ P̃1

R in the sense of Beauville-Laszlo. Thus we can compare both notions
via semistable G-bundles

semistable G-bundles on P̃1
R

FlG,µ(C) B(G,R)bsc.

This will allow us to have a more precise idea of how the inverse of the map (1.1) above should
look like.
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Notation

We adopt the notation from [Mil17] and [DM18]. Furthermore algebraic groups will always be
assumed to be over C unless specified otherwise, e.g. Gm always means Gm,C.

Throughout this thesis we will use X and P̃1
R interchangeably to denote the scheme

Proj(R[x, y, z]/(x2 + y2 + z2)).
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Chapter 2

Preliminaries

2.1 Basic properties of IsocR

Throughout the chapter we set Γ = Gal(C/R). We begin by introducing some of the main con-
structions that will be needed.

Definition 2.1.1. A real isocrystal is a finite dimensional C vector space V with a grading V =⊕
n∈Z Vn and an R-linear automorphism ϕ : V → V such that:

1. ϕ preserves the grading, i.e. ϕ(Vn) ⊂ Vn
2. ϕ is antiholomorphic, i.e. ϕ(λv) = λ̄ϕ(v) for λ ∈ C, v ∈ V

3. ϕ2|Vn = (−1)n .

An isocrystal V is called pure (or isocline) of degree n, if it is concentrated in one degree, i.e.
V = Vn.

Remark 2.1.2. For the rest of the thesis the term isocrystal will always refer to real isocrystals, unless
stated otherwise. Isocrystals will usually be denoted by (V, α), if the grading on V is obvious from
context. Otherwise, we may write (V, g, α), where g : Gm → GL(V ) is the morphism corresponding
to the induced grading or (V,

⊕
n∈Z Vn, α) also indicating the grading.

Definition 2.1.3. Define the category of isocrystals IsocR as follows:

• The objects are isocrystals as in the above definition

• A homomorphism between two isocrystals (V, αV ), (W,αW ) is a C-linear morphism f : V →
W which preserves the grading and commutes with the respective antiholomorphic automor-
phisms on V and W .

Lemma 2.1.4. The full subcategory of pure isocrystals of degree n is equivalent to the category

• of R-vector spaces, if n is even

• of H-vector spaces, if n is odd.

Proof. The even case is covered by descent of vector spaces, see e.g. [Bor12, Chapter AG §14]
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Now assume that we are given a pure isocrystal of odd degree (Vn, α). We define the following
structure on Vn:

l.v := i · v, j.v := α(v), k.v := i · α(v).

It is easy to check that the compatibility conditions in Definition 2.1.1. imply that the above
structure indeed makes (Vn, l, j, k) an H-vector space. Conversely an H-vector space (W, l, j, k)
consists of an R-vector space W with three R-linear automorphisms l, j, k. We make W into a
complex vector space by defining i.w = l(w). One then checks that (W, j) is an isocrystal, which
follows from the compatibility conditions of a quaterionic structure. Finally one checks that the
constructions preserve the homomorphisms.

Later on we will not only need to consider isocrystals, but even U(1)-equivariant isocrystals. We
give an ad-hoc definition, which will be motivated in Chapter 6.

Definition 2.1.5. Given an isocrystal (V,
⊕

n∈Z Vn, ϕ), define the map

ϕ⊗ σV : V ⊗C C[T, T−1]→ V ⊗C C[T, T−1]

as the direct sum of

(ϕ⊗ σV )n : Vn ⊗C C[T, T−1]→ Vn ⊗C C[T, T−1]
v ⊗ λT h 7→ ϕ(v)⊗ λ̄Tn−h.

Definition 2.1.6. Define the category of U(1)-equivariant isocrystals Isoc
U(1)
R as follows:

• The objects are isocrystals (V, ϕ) ∈ Ob(IsocR) with a comodule map γV : V → V ⊗CC[T, T−1]
respecting the grading, i.e. γV (Vn) ⊂ Vn ⊗ C[T, T−1], such that the following diagram com-
mutes

V V ⊗C C[T, T−1]

V V ⊗C C[T, T−1].

γV

ϕ ϕ⊗σV

γV

• A homomorphism between two objects is a homomorphism f ∈ HomIsocR(V,W ), such that

V V ⊗C C[T, T−1]

W W ⊗C C[T, T−1]

γV

f f⊗id

γW

commutes.

Proposition 2.1.7. Equivalently, one can define the category Isoc
U(1)
R as follows:

• The objects are isocrystals (V, ϕ) ∈ Ob(IsocR), such that for every n ∈ Z there is a decompo-
sition into complex subspaces

Vn =
⊕
m∈Z

V m
n , ϕ(V m

n ) ⊂ V n−m
n .
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• A homomorphism between two objects is a homomorphism f ∈ HomIsocR(V,W ), such that f
also preserves the above decomposition.

The proof is rather technical, but not difficult and relies on the fact that a comodule map

γV : V → V ⊗C C[T, T−1]

is equivalent to a decomposition
V =

⊕
m∈Z

V m .

One then checks that the additional conditions in Definition 2.1.6 translate to the conditions stated
in the lemma.

Remark 2.1.8. We will use both versions interchangeably. The second one has the advantage of
being less technical, while the first one is useful to define certain descent morphisms later on in
chapter 6.

Theorem 2.1.9. The categories Isoc
U(1)
R and RepR(S) are (tensor) equivalent.

Remark 2.1.10. Tensor equivalence will follow implicitly, since all our constructions will preserve
tensor products.

We will prove this theorem by constructing explicit quasi-inverses.

Construction 2.1.11. Let (V, VC =
⊕

(p,q)∈Z2 V p,q) be a real Hodge structure with induced complex
conjugation σ : VC → VC. We will explain how to endow the vector space VC with the structure of
an U(1)-equivariant isocrystal as follows.

• Define the grading by VC,n =
⊕

p+q=n V
p,q.

• To define the semilinear automorphism ϕ, we introduce the following map(
1

−1

)
: VC → VC , vp,q → (−1)qvp,q.

Now define
ϕ :=

(
1

−1

)
◦ σ

• The comodule map on the homogeneous elements vp,q ∈ V p,q is given by

γV : VC → VC ⊗ C[T, T−1]
vp,q → vp,q ⊗ T q.

Lemma 2.1.12. The above construction yields a functor

G : RepR(S)→ Isoc
U(1)
R .

Proof. To see that the above construction is well-defined, i.e. that we a get an U(1)-equivariant
isocrystal, one compares the compatibility conditions. We will only list the most important condi-
tions:
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• The commutativity of the diagram in Definition 2.1.6 (or equivalently the condition in Propo-
sition 2.1.7) corresponds to the Hodge Symmetry of our structure, as for v ∈ V p,q

deg(ϕ(v)) = deg(σ(vp,q)) = p = n− q.

• For v = vp,q ∈ VC,p+q we have

ϕ2(v) = ϕ((−1)pσ(v)) = (−1)p+qv.

Furthermore for f ∈ HomRepR(S)(V,W ), one can check that fC : VC →WC is a morphism in Isoc
U(1)
R

and thus the construction can be made functorially.

Construction 2.1.13. Now assume that we are given an U(1)-equivariant isocrystal (V, ϕ) and a
comodule map γV . This comes with a decomposition

Vn =
⊕
m∈Z

V m
n , ϕ(V m

n ) ⊂ V n−m
n .

• The Hodge decompositon is given by the following subspaces

V p,q := V q
p+q.

• The complex conjugation is given by

σ :=

(
1

−1

)
◦ ϕ.

Lemma 2.1.14. The above construction yields a functor

H : Isoc
U(1)
R → RepR(S).

Proof. We first verify that the construction is well-defined.

• First let us check that V is spanned by the subspaces V p,q. It is enough to show that each
Vn is spanned by these subspaces, which is true by our construction:⊕

p+q=n

V p,q =
⊕
q∈Z

V q
n = Vn (2.1)

• We have Hodge symmetry:

σ(V p,q) = σ(V q
p+q) = ϕ(V p

p+q) ⊂ V
q
p+q = V q,p.

• Let us check that σ is a complex conjugation. Semilinearity of σ follows from the semilinearity
of ϕ. For v = vp,q ∈ V p,q, we have

σ2(v) = σ((−1)pϕ(v)) = (−1)p ·
(

1

−1

)
◦ ϕ2(v) = (−1)p+q+p

(
1

−1

)
(v) = (−1)2(p+q)v = v.

Again we can extend this construction to be functorial. One checks that any morphism f in Isoc
U(1)
R

commutes with the defined complex conjugations and thus descends to the real forms. Obviously
f will also preserve the Hodge decomposition.
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Lemma 2.1.15. The functors

G : RepR(S)→ Isoc
U(1)
R , H : Isoc

U(1)
R → RepR(S)

are quasi-inverses.

Proof. Let us start with a Hodge structure (V, VC =
⊕

(p,q)∈Z2 V p,q) with complex conjugation
σ : VC → VC.

The associated isocrystal G(V, VC =
⊕

(p,q)∈Z2 V p,q) has the same underlying vector space VC and

• the decomposition is given by the subspaces VC,n =
⊕

p+q=n V
p,q

• the comodule structure is given by VC,n =
⊕

m∈Z V
m
n , where V m

n = V n−m,m

• the semilinear automorphism is given by ϕ =
(

1
−1

)
◦ σ.

Now by construction H(G(V, VC =
⊕

(p,q)∈Z2 V p,q)) has the same decomposition as our original
Hodge structure.

Since (
1

−1

)
◦
(

1

−1

)
= id

we also get back our original complex conjugation(
1

−1

)
◦
(

1

−1

)
◦ σ = σ.

Conversely let us start with an U(1)-equivariant isocrystal (W,φ, γ) (here γ is the comodule map).
Then H(W,φ, γ) has the same underlying complex vector space and

• the decomposition is given by W p,q =W q
p+q

• complex conjugation is given by
(

1
−1

)
◦ φ.

Applying G to this Hodge structure we get the complex vector space W and

• the pure isocrystal of slope n is given by
⊕

p+q=nW
q
n =Wn

• the semilinear automorphism is given by
(

1
−1

)
◦
(

1
−1

)
◦ φ = φ

• for the comodule structure the subspaces W p,q =W q
p+q are the degree q piece.

Thus we retrieve the original U(1)-equivariant isocrystal.

In the same manner one shows that morphisms are preserved under these constructions.
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Chapter 3

Properties of B(G,R)

In this chapter we will review the formalism of the functor B(G,F ), where G is a reductive group
over a local or global field F . Furthermore we will introduce two invariants of this set, the Newton
point and the natural transformation κG : B(G,R) → π1(G)Γ. In the last section we will give a
more Tannakian description of B(G,R) as tensor functors.

3.1 Basic definitions

In this section we will define B(G,R). Although there is a much more general definition, we will
mainly restrict our attention to the real case.

Definition 3.1.1. Let K/F be a finite Galois extension. Denote by Γ its Galois group. Let X be
a Γ-module and denote by D the corresponding group of multiplicative type. A Galois gerb for
K/F , bound by D, is an extension of groups

1→ D(K)→ E → Γ→ 1.

Remark 3.1.2. Note that D(K) has two Galois actions. First of all it has the natural Galois
extension as K-rational points of the algebraic group D over F and secondly it has an action
coming from conjugation induced by the short exact sequence. We require these two actions to
agree.

Definition 3.1.3. Given an reductive group G over F and a Galois gerb, an algebraic cocycle
consists of the following data:

• A morphism v ∈ HomK(DK , GK)

• A map x : E → G(K) denoted as w 7→ xw

satisfying the following conditions

• x is a 1-cocycle, i.e. xw1w2 = xw1w1(xw2), where E acts on G(K) via its image in Γ

• xd = v(d) for all d ∈ D(K)

• ad(xw) ◦ σ(v) = v whenever w maps to σ ∈ Γ.
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The set Z1
alg(E , G(K)) admits an action by G(K) as follows

g.(v, x) = (ad(g) ◦ v, w 7→ gxww(g)
−1).

One checks that this is a well-defined algebraic 1-cocycle again. This leads to

Definition 3.1.4. Define the pointed set H1
alg(E , G(K)) as the quotient of Z1

alg(E , G(K)) by the
action of G(K). The basepoint is simply the trivial homomorphism and the trivial abstract 1-
cocycle.

Now we are able to define the first invariant of H1
alg(E , G(K)).

Lemma 3.1.5. The projection

Z1
alg(E , G(K))→ HomK(DK , GK)

(v, x) 7→ v

induces a well-defined map

H1
alg(E , G(K))→

[
HomK(DK , GK)/ Int(G(K))

]Γ
Proof. This is an immediate consequence of the third condition of Definition 3.1.3.

Remark 3.1.6. The induced map is referred to as Newton map and the image of an element in
H1

alg(E , G(K)) is referred to as its Newton point. Given b ∈ H1
alg(E , G(K)) it is also denoted as

[vb].

We also have a morphism

HomF (DF , Z(G)) ↪−→
[
HomK(DK , GK)/ Int(G(K))

]Γ
.

given by basechange.

Definition 3.1.7. An element in H1
alg(E , G(K)) is basic, if its Newton point lies in the image of

the map
HomF (DF , Z(G)) ↪−→

[
HomK(DK , GK)/ Int(G(K))

]Γ
.

Now we specify to the real case by introducing the following Galois gerb;

Definition 3.1.8. Define the Weil group WC/R as

WC/R := C∗
⨿

C∗j

where
j2 = −1, λj = jλ̄ ∀λ ∈ C∗.

Remark 3.1.9. The Weil group fits into a short exact sequence

1→ C∗ →WC/R → Gal(C/R)→ 1

which sends j to the non-trivial element.

Definition 3.1.10. For a reductive group G over R, define

B(G,R) := H1
alg(WC/R, G(C)).
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We can arrange the above description in a more clear way.

Lemma 3.1.11. Giving an element in (v, x) ∈ Z1
alg(WC/R, G(C)) is equivalent to giving a commu-

tative diagram
0 Gm(C) WC/R Γ 0

0 G(C) G(C)⋊ Γ Γ 0,

b1 b2

where b1 ∈ HomC(DC, GC) and b2 is a group homomorphism.

Proof. Giving a morphism b1 is evidently the same as giving a morphism v. The main point is that
the 1-cocycle condition transitions to a group homomorphism condition, if we define

b2(w) := (xw, σw)

where σw is the image of w in Γ. Conversely we can define

xw := pr1(b2(w)).

Finally note that the third condition in Definition 3.1.3 is always fulfilled. Indeed it is true for the
C-rational points (cf. [Kot14, 2.3]), which are dense inside the above group scheme.

Remark 3.1.12. From now on we will mainly adopt this point of view of commutative diagrams mod-
ulo the equivalence relation, when speaking of B(G,R). Sometimes we will denote such elements
as [(b1, b2)].

Construction 3.1.13. The above construction can be made functorial. Given a homomorphism
f : G→ G′ of reductive groups over R, we can construct a map

f∗ : Z
1
alg(WC/R, G(C))→ Z1

alg(WC/R, G
′(C))

by post composition, i.e. given an element b = (b1, b2) we can define

f∗(b) = (f ◦ b1, (f ⋊ id) ◦ b2).

This map is compatible with the respective actions and thus we also have a map

f∗ : B(G,R)→ B(G′,R).

Let us now draw a connection B(GL(V ),R) and IsocR.

Lemma 3.1.14. Given a complex vector space V the group GL(V ) ⋊ Γ is isomorphic to the
group of semilinear automorphisms, i.e. morphisms T such that T (v + w) = T (v) + T (w) and
T (λv) = θ(λ)T (v) for some θ ∈ Γ. Under this isomorphism (id, σ) corresponds to the semilinear
automorphism σa(Σb∈Bλbb) := Σb∈Bσ(λb)b for a basis B of V .

Proof. [GW13, Chapter III §3.6 Proposition 6.].

Construction 3.1.15. Let V be a real vector space, G = GL(V ) and b = (b1, b2) ∈ Z1
alg(W,G(C)).

Then we can construct an isocrystal as follows

• The grading is given by b1 : Gm → GL(VC),
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• The semilinear automorphism is given by b2(j) ∈ GL(VC)⋊ Γ (cf. Lemma 3.1.14).

Note that the element (id, σ) ∈ GL(VC) ⋊ Γ can be identified with the semilinear automorphism
id⊗σ : V ⊗R C→ V ⊗R C.

Lemma 3.1.16. The above datum yields a well-defined isocrystal.

Proof. Let us go through the conditions in Definition 2.1.1.:

1. The calculation for vn ∈ Vn and λ ∈ C∗

b1(λ)b2(j)(vn) = b2(λ · j)(vn) = b2(j · λ̄)(vn) = b2(j)b1(λ̄)(vn) = b2(j)(λ̄
n · vn) = λn · b2(j)(vn)

shows that b2(j) preserves Vn
2. b2(j) is antiholomorphic since j ∈ WC/R is mapped to σ ∈ Γ and thus so is b2(j) under the

respective projection

3. this is a straightforward consequence of

b2(j)
2 = b2(−1) = b1(−1).

Remark 3.1.17. Thus we can interpret elements in B(GL(V ),R) as certain isomorphism classes of
isocrystals. We will interchangeably use both identifications.

One can check that b ∈ B(GL(V ),R) is basic if and only if the corresponding isomorphism class of
the isocrystal is pure.

3.2 Some group cohomology

We will need some facts about group cohomology to construct the natural transformation κG. For
this section our setup will be as follows; Γ is a finite group, A is an abelian group and these fit in
a short exact sequence

1 A E Γ 1.

Furthermore we have a triple (M,Y, ξ), where M and Y are Γ-modules, and ξ : Y → Hom(A,M)
a Γ-map. This induces a map ξΓ : Y Γ → Hom(A,M)Γ = HomΓ(A,M). From general theory of
group cohomology [Kot14, Section 3] we get an exact sequence

0 H1(Γ,M) H1(E,M) HomΓ(A,M) H2(Γ,M),inf res trans

where the restriction map is induced by precomposition (this is well-defined, since the action of A
on M is trivial).

Definition 3.2.1. Define H1
Y (E,M) to be the fiber product of the following diagram

H1
Y (E,M) Y Γ

H1(E,M) HomΓ(A,M)

r

π ξΓ

res
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Example 3.2.2. Let us draw a first connection with the prior section. For this consider the Galois
gerb:

1→ D(K)→ E → Γ→ 1

and the triple given by
(
T (K),HomK(D,T ), ξ : HomK(D,T )→ Hom(D(K), T (K))

)
, where T is a

torus over F .

Proposition 3.2.3. Let T be a torus. Then

H1
alg(E , T (K)) HomF (D,T )

H1(E , T (K)) Hom(D(K), T (K))

is cartesian, i.e. H1
alg(E , T (K)) ∼= H1

HomK(D,T )(E , T (K)).

Proof. We begin by specifying the maps. The upper map is the Newton point as we have(
HomK(DK , TK)/ Int(T (K))

)Γ
=

(
HomK(DK , TK)

)Γ
= HomF (D,T ).

The left map is the projection to the second factor. Instead of proving the universal property, we
will show that the following map is an isomorphism

H1
alg(E , T (K))→ HomF (D,T )×Hom(D(K),T (K)) H

1(E , T (K))

[(v, x)]→ (v, [x])

• For surjectivity consider such a given (v, [x]). Then there is an obvious choice for a diagram

0 D(K) E Γ 0

0 T (K) T (K)⋊ Γ Γ 0

v(K) [x]

and this is commutative since v and [x] have the same image in Hom(D(K), T (K)).

• For injectivity assume [(v, x)] and [(v′, x′)] have the same image. Then we immediately have
v = v′. Furthermore [x] = [x′] implies that x′ = t.x for some t ∈ T (K), in which case
(v′, x′) = t.(v, x). We stress that T (K) acts trivially on the first component since T (K) is
abelian.

Definition 3.2.4. Assume again the general setup. Choose any (set-theoretic) section s : Γ → E
and denote its image by X. For f ∈ Z1(A,M) and w ∈ E define

cor(f)(w) =
∑
x∈X

cx · f(c−1x wx)

where cx ∈ X is the unique representative, such that wxA = cxA or equivalently c−1x wx ∈ A. Then
define the corestriction map

cor : H1(A,M)→ H1(E,M)

as the induced map on the cohomology.

14



Definition 3.2.5. Define c0 : Y → H1
Y (E,M) via the following diagram

Y

H1
Y (E,M) Y Γ

H1(E,M) HomΓ(A,M)

N

cor ◦ξ

c0

r

π ξΓ

res

where N : Y → Y Γ is the norm map.

Lemma 3.2.6. The map c0 : Y → H1
Y (E,M) factors through YΓ.

Proof. Obviously the norm map factors through YΓ. For cor ◦ξ this follows from [Kot14, Lemma
3.3.]. Thus we get again by the universal property an induced map c : YΓ → H1

Y (E,M).

Now we would like to use the group cohomology constructions to a more concrete case. For this we
first give a definition of an abstract Tate-Nakayama triple.

Definition 3.2.7. Let Γ be a finite group, X and A Γ-modules and α ∈ H2(Γ,Hom(X,A)). We
say that (X,A, α) is a Tate-Nakayama triple, if for every subgroup Γ′ of Γ:

• For all r ∈ Z cup product with ResΓ/Γ′(α) induces isomorphisms

Hr(Γ′, X)→ Hr+2(Γ′, A)

• H1(Γ′,Hom(X,A)) is trivial.

Corresponding to α ∈ H2(Γ,Hom(X,A)), we can choose an extension

1→ Hom(X,A)→ E → Γ→ 1. (3.1)

Now let M be a Γ-module. Tensoring the canonical evaluation morphism

X ⊗Hom(X,A)→ A

with M yields
M ⊗X ⊗Hom(X,A)→M ⊗A

and by the adjoint property we get

ξ :M ⊗X → Hom(Hom(X,A),M ⊗A).

In terms of the setup at the beginning of this section (M ⊗A,M ⊗X, ξ) is a triple relative to the
short exact sequence (3.1). Thus we may apply the constructions made before to get a morphism

c : (M ⊗X)Γ → H1
Y (E ,M ⊗A).

Lemma 3.2.8. Assume that M is torsion free as an abelian group, then

c : (M ⊗X)Γ → H1
Y (E ,M ⊗A)

is an isomorphism.

Proof. [Kot14, Lemma 4.1.]
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3.3 Algebraic fundamental group and κG

Finally we turn to the case we are interested in. Choose

• Γ = Gal(C,R)

• X = Z with trivial Galois action

• A = C∗ with the natural Galois action

• α ∈ H2(Γ,C∗) to be the fundamental class,

where α corresponds to the short exact sequence

1→ Hom(Z,C∗)→WC/R → Γ→ 1.

From local class field theory we get the following theorem;

Theorem 3.3.1. The triple (Z,C∗, α) is a Tate-Nakayama triple for Gal(C/R).

For any torus T over R its cocharacter group X∗(T ) is a Gal(C/R) module. In the notation of our
preceding section this will be our module M .

Lemma 3.3.2. The evaluation map

X∗(T )⊗ C∗ → T (C)

is an isomorphism.

Proof. Choosing an explicit isomorphism TC ∼= Gr
m the statement reduces to checking that

Zr ⊗ C∗ → (C∗)r

is an isomorphism, which is straightforward.

Lemma 3.3.3. The map

c : X∗(T )Γ → H1
X∗(T )(W,X∗(T )⊗ C)→ H1

alg(W,T (C))

is an isomorphism.

Proof. The first map is an isomorphism by Lemma 3.2.8. The second map is an isomorphism by
Lemma 3.3.2. and Proposition 3.2.3.

Recall that by definition B(T,R) = H1
alg(W,T (C)) and thus the above lemma gives us a map

c−1 : B(T,R)→ X∗(T )Γ.

Based on this we will define κG. The last notion that we need is that of the algebraic fundamental
group.
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Construction 3.3.4. Let G be a reductive group over C. Denote its derived subgroup by Gss. The
universal cover of Gss is denoted by Gsc. Thus we have a homomorphism

ρ : Gsc → Gss ↪−→ G.

Now choose a maximal torus T ⊂ G and write T sc = ρ−1(T ), which is a maximal torus for Gsc.
We can define the algebraic fundamental group in terms of T as

π1(G,T ) := X∗(T )/ρ∗(X∗(T
sc)).

Now assume that T ′ is another maximal torus. Then we can find g ∈ G(C) such that T ′ = gTg−1.
Conjugation by g then induces a map

g∗ : π1(G,T ) ∼= π1(G,T
′).

This map can be shown to be a isomorphism and independent of the choice of g (cf. [Bor98, Lemma
1.2.]). Thus, once chosen a maximal torus, we will speak of the algebraic fundamental group π1(G).

Remark 3.3.5. Alternatively we could have defined

π1(G) = X∗(T )/⟨Φ∨⟩,

where Φ∨ are the coroots of G.

Definition 3.3.6. Given a reductive group G over R with a choice of a maximal torus T ⊂ G,
define its algebraic fundamental group as

π1(G) := π1(GC).

Remark 3.3.7. In fact π1(G) admits a Gal(C/R)-action. If TC ⊂ GC is a maximal torus, then σ(TC)
is again a maximal torus and we can find g ∈ G(C), such that σ(T ) = gTg−1. Then we can define
the action of σ to be the following composition

π1(G,T )
σ∗−→ π1(G, σ(T ))

g∗−→ π1(G,T )

which is again well-defined.

The following proposition motivates the name “algebraic fundamental group”.

Proposition 3.3.8. [Bor98, Proposition 1.11.] Let K be either R or C. For a connected reductive
K-group G there is a canonical isomorphism

π1(G)
∼−→ Hom

(
πtop
1 (Gm(C)), πtop

1 (G(C))
)

where πtop
1 is the usual topological fundamental group.

Now we will give the construction of κG. For more details we refer the reader to [Kot14, Section 9].

Construction 3.3.9. The construction is done in three steps

1. First assume that G = T is a torus. By the prior discussion we have

X∗(T )Γ = π1(T )Γ

and thus by Lemma 3.3.3. a well-defined morphism

κT : X∗(T )Γ → B(T,R).

17



2. Now assume that the derived subgroup of G is simply connected and denote the quotient of
G by its derived subgroup as D. Then the following commutative diagram

B(G,R) π1(G)Γ

B(D,R) π1(D)Γ

κG

κD

forces us to define κG as the arrow, which makes the diagram commute.

3. The general case uses the existence of a z-extension, that is a short exact sequence over R

1→ Z → G′ → G→ 1

such that

• Z is a central torus in G′,

• Z is obtained by Weil restriction of scalars of a torus of C ,

• the derived subgroup of G′ is simply connected.

One precedes to show that the maps.

B(G′,R)→ B(G,R) , π1(G′)Γ → π1(G)Γ

are quotient maps by the actions of B(Z,R) and π1(Z)Γ and that κG′ is equivariant relative
to these actions. Thus we get a commutative diagram

B(G′,R) π1(G
′)Γ

B(G,R) π1(G)Γ

p

κG′

p

κG

and there is a unique choice for κG.

3.4 B(G,R) as G-isocrystals

This section is mainly inspired by [DOR10, Chapter IX], which proves the results below in the
non-archimedean case.

Throughout this section let G be a reductive group over R.

Definition 3.4.1. AG-isocrystal, also denoted asG-IsocR, is an exact tensor functorN : RepR(G)→
IsocR, such that

ωiso ◦N = ωG ⊗R C.

The first aim of this section is to prove that

Theorem 3.4.2. There exists a bijection between B(G,R) and the set of isomorphism classes of
G-IsocR.

We are going to split this theorem into parts.
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Construction 3.4.3. Let b = (b1, b2) be an element in Z1
alg(WC/R, G(C)). To this we can associate a

G-IsocR as follows. By the functoriality introduced in the last section, we get an element

r∗(b) ∈ Z1
alg(W,GL(VC)).

By Proposition 3.1.16 this yields an isocrystal. More concretely given a representation (V, r) ∈
RepR(G), we can endow VC with the grading induced by

Gm
b1−→ GC

rC−→ GL(VC).

If b2(j) = (A, σ) ∈ G(C)⋊ Γ, then the semilinear automorphism is given by

rC(A) ◦ σ.

Proposition 3.4.4. There exists a well-defined map

N : Z1
alg(W,G(C))→ G- IsocR
b = (b1, b2) 7→

(
Nb : (V, r) 7→ (VC, rC ◦ b1, rC(A) ◦ σ)

)
Proof. We have checked that Nb(V, r) is an isocrystal. If f : (V, r) → (V ′, r′) is a morphism in
RepR(G), then fC : VC → V ′C is compatible with the grading and the semilinear automorphism,
since it commutes with rC. Furthermore it is straightforward, but mostly technical, to verify that
Nb is a tensor exact functor.

Lemma 3.4.5. The above map descends to a well-defined map

N : B(G,R)→ G- IsocR /∼
[b] = [(b1, b2)] 7→ [Nb : (V, r) 7→ (VC, rC ◦ b1, rC(A) ◦ σ)].

Proof. We have to check that g.b = b′ implies Nb
∼= Nb′ . We will check that the required natural

isomorphism β : Nb → Ng.b is given by:

β(V, r) : (VC, rC ◦ b1, rC(A) ◦ σ)→ (V ⊗ C, rC ◦ ad(g) ◦ b1, rC(g ·A · σ(g)−1) ◦ σ)
v 7→ rC(g)v.

Let v ∈ V n. Then
rC(g(b1(λ)g

−1)rC(g)v = λnrC(g)v

and thus the above morphism preserves the grading. We can conclude by the commutativity of the
following diagram

VC VC

VC VC

rC(A)◦σ

rC(g) rC(g)

rC(g·A·σ(g)−1)◦σ

that β(V, r) is indeed a morphism in IsocR. Thus β is a natural transformation. Its inverse is given
by v 7→ rC(g)

−1v (which is similarly checked to be again a morphism in IsocR).

Lemma 3.4.6. The map N : B(G,R)→ G- IsocR /∼ is surjective.
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Proof. Assume we have a G-IsocR, i.e. a tensor exact functor N : RepR(G) → IsocR such that
ωiso ◦N = ωG ⊗R C . Consider the following diagram

RepR(G) IsocR RepC(Gm)

VectC
ωG⊗RC

N grad

ωGm

where grad : IsocR → RepC(Gm) forgets the semilinear automorphism and the vertical arrow also
forgets the grading. Then the left triangle commutes by assumption and the right triangle always
commutes. This induces a natural transformation

(N ◦ gr)∗ : Aut(ωGm)→ Aut(ωG ⊗R C)

between functors
C-alg→ Grps.

The latter functor is represented by GC and thus by Yoneda we get a morphism

b1 : Gm → GC.

By construction the grading on N(V, r) is induced by rC ◦ b1.

For each representation denote N(V, r) = (VC, ϕr). We can define the following automorphism of
the fiber functor

α(V, r) : VC
ϕr◦σ−−−→ VC.

By Tannaka duality such an automorphism is given by an element A ∈ G(C). Then we define
b2(j) = (A, σ). Note that again by construction ϕr = rC(A) ◦ σ.

We claim that b = (b1, b2) is an element in Z1
alg(W,G(C)). This comes down to checking that

b2(λj) = b2(jλ̄). For each representation we have

rC(b1(λ)A) ◦ σ = rC(b1(λ)) ◦ ϕr = ϕr ◦ rC(b1(λ)) = rC(A) ◦ rC(σ(b1(λ̄))) ◦ σ = rC(Aσ(b1(λ̄))) ◦ σ.

The second equality follows since by definition ϕr = rC(A) ◦ σ preserves the grading and the third
equality follows from σ ◦M = σ(M)◦σ, which holds for any automorphism. But since this equality
holds for any (V, r) ∈ RepR(G), we can conclude that

b1(λ)A = Aσ(b1(λ̄)).

This implies the desired equality.

Finally we have that Nb
∼= N . The isomorphism is a consequence of our construction. In particular

it follows from the following equalities

gr ◦N = gr ◦Nb , ϕr = rC(A) ◦ σ.

Lemma 3.4.7. The map N : B(G,R)→ G- IsocR /∼ is injective.

Proof. Assume that α : Nb
∼= Nb′ . Then we get an induced automorphism of the fiber functor

ωG ⊗ C given by post composing Nb (resp. Nb′) with ωiso. This is equivalent to an element
g ∈ G(C), which implies that

Nb(V, r)
rC(g)−−−→ Nb′(V, r)
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is an isomorphism in IsocR. In particular v ∈ V ′n if and only if v ∈ rC(g)Vn, i.e.

grad ◦Nb′ = grad ◦Nb ◦ ad(g)

and we conclude that
b′1 = ad(g)b1.

Finally the commutative diagram

VC VC

VC VC

rC(A)◦σ

rC(g) rC(g)

rC(A
′)◦σ

implies that
rC(A

′) = rC(g ·A · σ(g)−1)

for all representations and thus
A′ = g ·A · σ(g)−1.

We have shown that b′ = g.b, i.e. [b] = [b′] and thus N is injective.

Definition 3.4.8. Define Hom(RepR(G), IsocR) to be the set of isomorphism classes of exact tensor
functors.

Lemma 3.4.9. There is an isomorphism between G- IsocR /∼ and Hom(RepR(G), IsocR).

Proof. As there is an obvious inclusion G- IsocR /∼ → Hom(RepR(G), IsocR), we only need to verify
surjectivity. Given such an element

N ∈ Hom(RepR(G), IsocR),

the composition with ωiso is necessarily isomorphic to ωG ⊗ C: There exists by [DM18, Theorem
3.2.] an isomorphism between tensor functors

ω′ : RepR(G)→ VectC

and G torsors. But H1(C, G) = ∗ implies that all G-torsors are trivial and thus all fiber functors
are isomorphic to ωG ⊗ C.

Corollary 3.4.10. There exists a bijection

B(G,R) ∼= Hom(RepR(G), IsocR).

Proof. Combine Lemma 3.4.9. and Theorem 3.4.2.
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Chapter 4

Vector bundles on P̃1R

In this chapter we devote our attention to the classification of vector bundles on X := P̃1
R, the

twistor P1. Our main result will yield an essentially surjective functor E : IsocR → BunX .

4.1 Semistable vector bundles

The complex projective space P1
C has two real forms corresponding to the elements of the Brauer

group Br(R) = Z/2Z. The trivial form is the real projective space P1
R and the non-trivial form

gives the twistor P1. An explicit realization is given by

P̃1
R := Proj(R[x, y, z]/(x2 + y2 + z2))

as the following lemma will show.

Lemma 4.1.1. The automorphism f(z) = −1
z̄ of P1

C is a descent datum for the Galois covering
p : Spec(C)→ Spec(R) and the descent is given by Proj(R[x, y, z]/I) for I = (x2 + y2 + z2).

Proof. As Gal(C/R)× Spec(C) ∼−→ Spec(C⊗R C), a descent datum for a scheme Z is equivalent to
an action Gal(C/R)× Z → Z, such that the following diagram commutes:

Z Z

C C

σZ

σ

for all σ ∈ Gal(C/R). In our case we have Z = P1
C and we choose σZ = f .

Then consider the morphism ϕ : C[x, y, z]/I → C[a, b]

x 7→ a2 + b2

2
, y 7→ i(a2 − b2)

2
, z 7→ i(ab)

which induces an isomorphism between P1
C and the conic V (I) ⊂ P2

C.

This isomorphism induces an isomorphism of descent data by defining the involution
σ1 = ϕ−1 ◦ f ◦ ϕ on C[x, y, z]/I. Explicit calculation shows that σ1 is the ordinary complex
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conjugation on C[x, y, z]/I, thus the real form is R[x, y, z]/I. Putting everything together we get
a map π : P1

C → P̃1
R and P̃1

R is isomorphic to the descent of P1
C via f since the respective descent

data are.

Lemma 4.1.2. The canonical divisor ωX is isomorphic to OX(−1).

Proof. We consider X as subvariety of P2
R. We have that ωP2

R
∼= OP2

R
(−3). Now adjunction formula

tells us that
ωX
∼= ωP2

R
⊗OP2

R
((X))⊗OX

∼= OP2
R
(−3 + 2)⊗OX

∼= OX(−1).

Definition 4.1.3. For λ ∈ 1
2Z define the following vector bundles:

OX(λ) =

{
OX(λ) for λ ∈ Z
π∗OP1

C
(2λ) for λ ∈ 1

2Z \ Z

Remark 4.1.4. For the integers we get back the classical twisted line bundles OX(λ) whereas for
proper fractions λ

2 we get vector bundles of rank 2 as π is a degree 2 covering.

Lemma 4.1.5. The cohomology of OX(λ) is as follows:

H0(X,OX(λ)) =

{
R2λ+1 for λ ∈ (12Z)≥0
0 else

H1(X,OX(λ)) =

{
R−(2λ+1) for λ ∈ 1

2Z≤−1
0 else

Proof. If λ ∈ 1
2Z \ Z, then we conclude H i(X,OX(λ)) ∼= H i(P1

C,OP1
C
(2λ)) as π : P1

C → X is affine.
Thus this case is covered by the computation of cohomology on P1

C. For the line bundles OX(λ),
where now λ ∈ Z, we compute the global sections and then conclude via Serre duality for the first
cohomology groups. By [Har77, Exercise 5.14] and [Har77, Exercise 6.4] we have an isomorphism
of graded rings

R = R[x, y, z]/(x2 + y2 + z2) ∼=
⊕
n≥0

Γ(X,OX(n)).

One then checks that the generators of Rn as R-vector space are given by

{ ybzc | b+ c = n }
⨿
{xybzc | b+ c = n− 1 }.

Thus dimR(H
0(X,OX(n))) = dimR(Rn) = (n + 1) + n = 2n + 1 as desired. By Serre duality we

also get the first cohomology groups as claimed above.

Definition 4.1.6. A vector bundle V on X (resp. P1
C) is called pure, if V ∼= OX(λ2 )

⊕n (resp.
V ∼= OP1

C
(λ)) for some λ ∈ Z and n ∈ N.

Lemma 4.1.7. With the above notation we have:

π∗OX(λ) ∼=

{
OP1

C
(2λ) for λ ∈ Z

OP1
C
(2λ)⊕OP1

C
(2λ) for λ ∈ (12Z \ Z)
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Proof. • If λ ∈ Z, then π∗OX(λ) is a line bundle. Using finite locally free base change [Sta18,
Tag 0CKW], we can compute the cohomology

H∗(P1
C, π

∗OX(λ)) ∼= H∗(X,OX(λ))⊗R C.

Since a line bundle on P1
C is determined by its cohomology, we can conclude with Lemma

4.1.5.

• For λ ∈ (12Z \ Z) this is [FF18, Exemple 5.6.18.]

We recall the Harder-Narasimhan formalism. Let V be a vector bundle on X. Then we define the
degree of V as deg(V) := deg(det(V)) and its slope as µ(V) = deg(V)

rk(V) .

Definition 4.1.8. Let Z be a scheme and V a locally free sheaf on Z. A locally free subsheaf
W ⊂ V is a subbundle, if it is Zariski locally a direct summand of V.

Definition 4.1.9. Let V be a vector bundle on a scheme Z. Then V is called semistable, if

W is a subbundle of V =⇒ µ(W) ≤ µ(V).

It is called stable, if the above inequality is always strict for proper subbundles.

Definition 4.1.10. Let V be a vector bundle on X. A Harder-Narasimhan filtration is a filtration
of subbundles

0 = V0 ⊊ V1 ⊊ V2 ⊊ ... ⊊ Vr = V

such that Vi/Vi−1 is semistable with slope λi and

λ1 > ... > λr

Theorem 4.1.11. Each vector bundle on X posses a Harder-Narasimhan filtration.

Proof. [HL10, Theorem 1.3.4]

The following Lemmas are a special case of a more general statement in [FF18]. We can apply
these results, since

π : P1
C → X

is a finite étale Galois covering.

Lemma 4.1.12. A vector bundle V on X is semistable if and only if π∗V on P1
C is semistable.

Proof. [FF18, Lemme 5.6.19.].

Lemma 4.1.13. A vector bundle V on X is pure if and only if π∗V on P1
C is pure.

Proof. The argument given in the proof of [FF18, Proposition 5.6.25.] applies in our case with the
slight modification that we have to use Lemma 4.1.7. instead of [FF18, Proposition 5.6.23.].

Corollary 4.1.14. A vector bundle on X is pure if and only if it is semistable.

Proof. A vector bundle on P1
C is semistable if and only if it is pure. By the above two Lemmas this

implies the required statement.
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Theorem 4.1.15. The Harder-Narasimhan filtration is split, i.e. each vector bundle on X is
isomorphic to a direct sum

⊕n
i=1OX(λi

2 )
⊕di.

Proof. Let V be a vector bundle on X. It comes with a Harder-Narasimhan filtration

0 = V0 ⊊ V1 ⊊ V2 ⊊ ... ⊊ Vr = V.

The proof will proceed by induction on the index of the filtration. We will show that

Vi ∼=
⊕

n>λi+1

OX(n)⊕an .

• The base case i = 1 is covered by Corollary 4.1.14, since V1 is semistable of slope λ1 and thus
isomorphic to OX(λ1)

⊕aλ1

• Now for the induction step we use the short exact sequence

0→ Vi → Vi+1 → Vi+1/Vi → 0.

Again by Corollary 4.1.14 and by the induction hypothesis this sequence can be written as

0→
⊕

n>λi+1

OX(n)⊕an → Vi+1 → OX(λi+1)
⊕aλi+1 → 0.

By Serre duality we have

Ext1((Vi+1/Vi),Vi) ∼= H1(X,Vi ⊗ (Vi+1/Vi)∨) ∼= H0(X,V∨i ⊗ (Vi+1/Vi)⊗OX(−1)) = 0.

The last equality follows, since all the direct summands in V∨i ⊗ (Vi+1/Vi)⊗OX(−1) are negative
and these have trivial global sections. Thus the sequence is split and

Vi+1
∼= Vi

⊕
Vi+1/Vi ∼=

⊕
n>λi+1

OX(n)⊕an
⊕
OX(λi+1)

⊕aλi+1 ∼=
⊕

n>λi+2

OX(n)⊕an .

4.2 Vector bundles via IsocR

The classification of vector bundles on X will come down to classifying descent data of vector
bundles of P1

C. Since in our case the morphism π : P1
C → X is a Galois covering (with Galois group

Z/2Z), every descent datum of a vector bundle is effective. We get an equivalence of categories
between BunX , the category of vector bundles on X, and Bun(π : P1

C → X), the category of descent
data of vector bundles.

Definition 4.2.1. The category of descent data Bun(π : P1
C → X) has

• As objects pairs (V, v), where V is a vector bundle and v an isomorphism

v : f∗V → V such that v ◦ f∗v = id,

• As morphisms vector bundle morphisms that commute with the respective descent data.
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Let us connect this definition with the classical notion of a descent datum. We have two morphisms

p1, p2 : Gal(C/R)× P1
C = P1

C
⨿

P1
C → P1

C where p1 = id
⨿

id and p2 = id
⨿

f.

For the classic notion of a descent datum we require a vector bundle V with an isomorphism

p∗1V
∼−→ p∗2V

fulfilling a cocycle condition. By comparing the isomorphism on connected components, this is
equivalent to an isomorphism v : f∗V → V. In a similar way one sees that the cocycle condition
can be expressed as

v ◦ f∗v = id .

Theorem 4.2.2. The descent data are effective, i.e. the functor is an

BunX → Bun(π : P1
C → X)

equivalence of categories.

Proof. Combine [Sta18, Tag 0CDQ] with [Gro65, Proposition 2.5.2]

Example 4.2.3. We denote by D0 the divisor (0) and by D∞ the divisor (∞) in P1
C. We have an

isomorphism of OP1
C

modules λz : OP1
C
(D0)→ OP1

C
(D∞) given by multiplication with λz ∈ K(P1

C),
where λ ∈ C∗. We now calculate the pullback of this morphism by f∗. By abuse of notation we
will denote by f the induced ring morphism on the graded rings or their localisations.

First let’s see that there is a canonical isomorphism δ : f∗OP1
C
(D0)

∼−→ OP1
C
(D∞). On W1 =

Spec(C[z]) and W2 = Spec(C[1z ]) we have:

f∗OP1
C
(D0)(W2) = OP1

C
(D0)(W1)⊗C[z] C[ 1z ] = (z)−1C[z]⊗C[z] C[ 1z ] ∼= ( 1

z
)−1C[ 1

z
],

where the last isomorphism is given by f ⊗ id. Similarly one sees that f∗OP1
C
(D0)(W1) ∼= C[z] via

f⊗id as well; these isomorphisms agree on W0∩W1 and give a global isomorphism δ : f∗OP1
C
(D0)→

OP1
C
(D∞). More generally the above can be generalized to give isomorphism

δn : f∗OP1
C
(nD0)→ OP1

C
(nD∞).

Now for the pullback on W1 we have:

(z)−1C[z]⊗C[z] C[ 1z ]→ C[z]⊗C[z] C[ 1z ], a⊗ h 7→ a · (λz)⊗ h = a⊗−λ̄1
z
h

and repeating the calculation for W2 shows that f∗(λz) = − λ̄
z : OP1

C
(D∞)→ OP1

C
(D0).

Lemma 4.2.4. Let V and W be semistable vector bundles on P 1
C of the same slope. Then for a

closed point x ∈ P1
C

HomOP1C
(V,W) ∼= HomC(Vx/mxVx,Wx/mxWx).

Proof. We can reduce to the case of semistable vector bundles of slope 0. In this case one can
conclude by using that H0(P1

C,OP1
C
) = C and that the category of vector bundles is additive.
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Lemma 4.2.5. Let (Vn, ϕn) be a pure isocrystal of degree n. We write

Vn = Vn ⊗OP1
C
(nD0), V∞n = Vn ⊗OP1

C
(nD∞).

Define the isomorphism φn : f∗Vn → Vn via the following diagram:

V∞n

f∗(Vn) Vn.

id⊗· 1
znϕn⊗δn

φn

Then (Vn, φn) is a descent datum, i.e. an object in Bun(π : P1
C → X).

Proof. First of all note that φn : f∗(Vn) → Vn is a morphism of OP1
C

modules, as δn is. The main
part of the Lemma is to verify that φn ◦ f∗φn = id. We consider the composition:

f∗(V∞n ) V∞n

f∗(f∗(Vn)) f∗(Vn) Vn

f∗(id⊗· 1
zn

) id⊗· 1
zn

f∗(ϕn⊗δn)

f∗φn

ϕn⊗δn

φn

We evaluate the commutative triangles at W1:

Vn ⊗ znC[1z ]⊗C[ 1
z
] C[z]

Vn ⊗ 1
znC[z] Vn ⊗ C[1z ]⊗C[ 1

z
] C[z]

id⊗· 1
zn
⊗id

f∗φn

f∗(ϕ⊗δn)

Vn ⊗ C[1z ]

Vn ⊗ C[1z ]⊗C[ 1
z
] C[z] Vn ⊗ 1

znC[z]

id⊗· 1
zn

ϕn⊗δn

φn

Here we identified f∗(f∗(Vn)) canonically with (f ◦ f)∗(Vn) = Vn. Thus we see that on W1 we have

f∗φn(v ⊗ g(z)) = ϕn(v)⊗ ḡ
(
−1

z

)
· 1
zn
⊗ 1

and furthermore evaluating at the right triangle gives

φn(ϕn(v)⊗ ḡ
(
−1

z

)
· 1
zn
⊗ 1) = ϕ2n(v)⊗ g(z) · (−1)n = (−1)2nv ⊗ g(z) = v ⊗ g(z).

Now one might repeat the calculation for W2, which is similar to the above one, or use Lemma
4.2.4. to conclude that indeed φn ◦ f∗φn = id.

Construction 4.2.6. With the above Lemma we can construct a functor

E : IsocR → Bun(π : P1
C → X).

To each isocrystal (
⊕

n∈Z Vn,
⊕

n∈Z ϕn) we associate the vector bundle

(
⊕
n∈Z
Vn,

⊕
n∈Z

φn).

This can be made functorial in the obvious way.
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Theorem 4.2.7. The essential image of the functor E : IsocR → Bun(π : P1
C → X) contains the

pure objects, i.e. (V, v) such that V ∼= O(nD)⊕r.

Proof. As stated above V admits an isomorphism ψ : V → O(nD0)
⊕r which induces an isomorphism

of descent data (V, v) ∼= (O(nD0)
⊕r, ψ ◦ v ◦ ψ−1). So without loss of generality we assume that

V = V ⊗O(nD0) with dim(V ) = r.

The morphism v : f∗V → V induces a morphism on stalks at the point p = [1 : 1]. We can identify

(f∗V)p ∼= Vf(p) ⊗OX,f(p)
OX,p

∼= (V ⊗OX,f(p))⊗OX,f(p)
OX,p

and after we modulo out by mp we are left with a morphism of C vector spaces vp : V ⊗σ C→ V .
Here the subscript at the tensor product means that we tensor via the complex conjugation. Finally
we can define the antiholomorphic automorphism as the following composition

ϕ : V →V ⊗σ C→ V

w 7→w ⊗σ 1 7→ vp(w ⊗ 1).

Let’s verify that this is indeed an isocrystal. First note that for λ ∈ C

ϕ(λw) = vp(λw ⊗σ 1) = vp(w ⊗σ λ̄) = λ̄vp(w ⊗σ 1) = λ̄ϕ(w)

where in the third equality we use that vp is morphism of OX,p/mp-modules.

Having established that ϕ is antiholomorphic, the morphism ϕ⊗ δn : f∗(Vn)→ V∞n is well-defined
and we can consider

V∞n

f∗(Vn) Vn.

id⊗· 1
znϕ⊗δn

v

By construction this diagram commutes at the stalks of the point p. Now by Lemma 4.2.4. this is
already sufficient to conclude that the diagram is commutative on P1

C. A calculation similar to the
one in Lemma 4.2.5. allows us to conclude:

w ⊗ 1 = v(f∗v(w ⊗ 1)) = ϕ2(w)⊗ (−1)n

where now the first equality is a consequence of v : f∗V → V being a descent datum. Thus we
have proven that (V, ϕ) is an isocrystal and the commutativity of the above triangle shows that
E(V, ϕ) = (V, v).

Corollary 4.2.8. The functor E : IsocR → Bun(π : P1
C → X) is essentially surjective.

Proof. By Theorem 4.2.7. the essential image contains pure vector bundles, hence they contain also
direct sums of vector bundles. By Theorem 4.1.15 every vector bundle is isomorphic to a direct
sum of pure vector bundles. Thus E is essentially surjective.

Corollary 4.2.9. The functor E : IsocR → Bun(π : P1
C → X) is faithful. When restricted to the

subcategory of pure isocrystals of slope n for some n ∈ Z, it is also full.
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Proof. The functor is faithful as we can compare both morphisms at the stalk 1 ∈ P1
C and recover

the original morphism in IsocR.

Now assume we have two pure isocrystals (V, ϕV ) and (W,ϕW ) of the same slope. In this case
applying E will yield two pure, or equivalently semistable, vector bundles. Thus we can apply
Lemma 4.2.4., which implies that a morphism E(V, ϕV )→ E(W,ϕW ) is given by a linear morphism
f ∈ HomC(V,W ) that commutes with descent data, which is exactly the condition

f ◦ ϕV = ϕW ◦ f.
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Chapter 5

B(G,R) as G-bundles on P̃1R

The aim of this chapter is to explore the relationship between B(G,R) and G-bundles on X := P̃1
R.

In particular we want to prove

Theorem 5.0.1. There exists an isomorphism H1
ét(X,G)

∼= B(G,R).

This theorem can be seen as the descent version of the isomorphism H1
ét(P1

C, G)
∼= B(G,C) in the

complex case; there is a similiar analogy for the Fargues-Fontaine curve in the non-archimedean
case.

The proof proceeds in two steps:

B(G,R) Hom⊗(RepR(G), IsocR) H1
ét(X,G)

(1) (2)

The first equivalence was proven in Section 3.4. After proving the second equivalence, we will show
that under this identification we have

B(G,R)bsc ∼= {semistable G-bundles}/ ∼ .

5.1 Hom⊗(RepR(G), IsocR) and H1
ét(X,G)

The main reference for this section is [Ans18]. We start by introducing some notation from [Zie11].

Definition 5.1.1. A Tannakian category over k is an essentially small symmetric monoidal category
T which is abelian, k-linear and rigid, for which the natural morphism k → End(1) induced by the
k-linear structure of T is an isomorphism and for which there exists a non-empty scheme S over k
and an exact k-linear tensor functor ω from T to QCoh(S).

Example 5.1.2. The main example for us in this section will be IsocR. It is easy to see that we
can endow it with a tensor product, which fulfills all the above requirements. Furthermore we can
embed IsocR into Qcoh(X) by the results of the last chapter.

Theorem 5.1.3. The functor E : IsocR → BunX is an exact faithful tensor functor inducing a
bijection on isomorphism classes.
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Proof. By Corollary 4.2.8 the functor E is essentially surjective and by Corollary 4.2.9. it is faithful.
Thus it is a bijection on isomorphism classes.

Now we show that E is a tensor functor. Since E preserves direct sums, it suffices to show that for
two pure isocrystals (Vn, ϕn) and (Wm, αm) the tensor product is preserved. As the construction

IsocR → Bun(π : P1
C → P̃1

R)

preserves tensor products, it remains to see that under the equivalence

Bun(π : P1
C → P̃1

R)
∼= BunX

the tensor product is preserved. To prove this, it suffices to show that for all vector bundles V,W
on X, there is a natural isomorphism

αV,W : π∗(W ⊗OX
V) ∼= π∗W ⊗OP1C

π∗V

which respects the descent data. We may work locally to construct such an isomorphism. In this
case the claim follows from the following argument. Let A be an R-algebra with A-modules M and
N . Then the chain of isomorphisms

(M ⊗A N)⊗R C ∼=M ⊗A NC ∼=MC ⊗AC NC

respects the descent data, i.e. the antiholomorphic involutions.

Finally let us show exactness. Since HomIsocR(V,W ) = 0 for isocrystals of different slopes, we are
reduced to show that exact sequences consisting of pure isocrystals are preserved. In this case it
follows from Corollary 4.2.9., since E |IsocnR is an equivalence.

Remark 5.1.4. As in the case with P1
C, the functor is not an equivalence nor exact. For example

the Euler sequence
0→ OP1

C
(−2)→ OP1

C
(−1)⊕2 → OP1

C
→ 0

descends to
0→ OX(−1)→ OX(−1

2
)→ OX → 0.

Definition 5.1.5. Let X be a scheme. Denote by FilBunX is the category of locally free sheaves
V with a decreasing filtration by subbundles F ∗V satisfying:

1.
∪
n∈Z

FnV = V,

2.
∩
n∈Z

FnV = 0.

The morphisms are given by f : V → W such that f(FnV) ⊂ FnW.

We would like to endow this category with a certain notion of exactness, for more details [Zie11,
Chapter 4].

Definition 5.1.6. A morphism f : V → W in FilBunX is called admissible, if f(FnV) = Im(f) ∩
FnW.
A sequence in FilBunX is called short exact, if the underlying sequence of sheaves is short exact
and the morphisms are admissible.
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Construction 5.1.7. Recall from the last chapter that given a vector bundle on V on X, we can find
the Harder-Narasimhan filtration

0 = V0 ⊊ V1 ⊊ V2 ⊊ ... ⊊ Vr = V.

For indexing reasons we rather want a filtration indexed by 1
2Z

.... ⊂ HNi+ 1
2 (V) ⊂ HNi(V) ⊂ HNi− 1

2 (V) ⊂ ...

such that
HNi(V)/HNi+ 1

2 (V)
is semistable of slope i. These notions are equivalent, since it is just a matter of reindexing. For
example given a filtration as above, we can set

HNi(V) = Vd, d = min{k | i < µk+1}.

Remark 5.1.8. As in [Ans18, p.2] we can easily describe the Harder-Narasimhan filtration of a vector
bundle V = E(V, ϕ). For this decompose the isocrystal into its isocline factors (V, ϕ) =

⊕
i∈Z(Vi, ϕi).

Then define filn(V, ϕ) =
⊕

i≥n(Vi, ϕi) and HNn V = E(filn(V, ϕ)).

Lemma 5.1.9. There is a functor HN : BunX → FilBunX sending a vector bundle to its Harder-
Narasimhan filtration. This functor is fully faithful.

Proof. We already described the construction. Every vector bundle morphism preserves the Harder-
Narasimhan filtration, thus we can make the above construction functorial. It is fully faithful, since
the Harder-Narasimhan filtration stabilizes eventually, i.e.

HNi(V) = V

for sufficient big i ∈ 1
2Z.

Definition 5.1.10. The category GrBunX is the category of vector bundles with a decomposition
V = ⊕n∈ZVn of subbundles. Morphisms are degree preserving morphisms of vector bundles.

Lemma 5.1.11. The functor gr : FilBunX → GrBunX given by

gr(V, F ∗V) :=
⊕
n∈Z

FnV/Fn+1V

is a tensor exact functor.

Proof. For exactness note that if

0→ (V, F ∗V)→ (W, F ∗W)→ (Z, F ∗Z)→ 0

is exact in FilBunX , then

0→ F pV → F pW → F pZ → 0

is exact again. Then we can conclude by 3× 3 Lemma. The admissibility condition is crucial here.
The tensor part follows from∑

p+q=n

F pV ⊗ F qW⧸ ∑
p+q=n+1

F pV ⊗ F qW
∼=

⊕
p+q=n

F pV/F p+1W ⊗ F qV/F q+1W
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Lemma 5.1.12. The composite functor

IsocR BunX FilBunX GrBunX
E HN gr

is an equivalence of exact categories from IsocR to its essential image in GrBunX , which consists
of graded vector bundles

E =
⊕
i∈ 1

2
Z

Ei

such that Ei is semistable of slope i.

Proof. Essential surjectivity is straightforward since semistable vector bundles are exactly the pure
vector bundles.

The functor is fully faithful by Corollary 4.2.9.

Remark 5.1.13. We will denote the inverse of the composite functor by E−1gr .

Definition 5.1.14. Let G be a sheaf of groups on (Sch/X)ét. A G-torsor P over X (for the étale
topology) is a sheaf on (Sch/X)ét with a left G-action G × P → P such that there exists an étale
cover {Ui → X} on which there exist G-equivariant isomorphisms P |Ui

∼= G |Ui .

Lemma 5.1.15. Let G be a reductive group over R. Sending a G-torsor P over X to

ω : RepR(G)→ BunX , V 7→ P ×G (V ⊗R OX)

defines an equivalence from the groupoid of G-torsors to the groupoid of exact tensor functors from
RepR(G) to BunX . The inverse equivalence sends an exact tensor functor ω : RepR(G) → BunX
to the G-torsor Isom(ωcan, ω) of isomorphisms of ω to the canonical fiber functor

ωcan : RepR(G)→ BunX , V 7→ V ⊗R OX .

Proof. [Far, Section 4.1]

Remark 5.1.16. We will refer to G-torsors also as G-bundles.

Definition 5.1.17. Let
ω : T → FilBunX

be an exact tensor functor from a Tannakian category T .

• A splitting of ω is a functor
γ : T → GrBunX

such that fil ◦γ = ω.

• Define the following presheaves on Sch/X:

1. Spl(ω)(Y f−→ X) := {set of splittings of T ω−→ BunX
f∗
−→ BunY }

2. U(ω) := Ker(Aut⊗(ω)→ Aut⊗(gr ◦ ω))
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Lemma 5.1.18. • With the above notation U(ω) is representable by an affine group scheme
over k. It comes together with a decreasing filtration of normal subgroups

U(ω) = U1(ω) ⊇ U2(ω) ⊇ ...Ui(ω) ⊇ ...

for i ≥ 1. Furthermore the quotient griU(ω) := Ui(ω)/Ui+1(ω) is abelian and isomorphic to

gri U(ω) ∼= Lie(gri U(ω)) ∼= gri(ω(Lie(G))).

• Spl(ω) is representable by an U(ω)-torsor for the fpqc-topology.

Proof. [Zie11, Section 4.3]

Lemma 5.1.19. Let

ω : RepR(G)→ BunX

be an exact tensor functor. Then

HN ◦ω : RepR(G)→ FilBunX

is still exact.

Proof. As we only consider reductive groups over characteristic zero fields, we can apply [DM18].
This tells us that RepR(G) is semisimple and in particular every short exact sequence

0→ V →W → Z → 0

is split. But then

HN(ω(V ))→ HN(ω(W ))→ HN(ω(Z))

is also split. Thus HN ◦ω is exact.

Definition 5.1.20. Let Hom⊗(RepR(G), IsocR) be the groupoid of exact tensor functors

RepR(G)→ IsocR

and Hom⊗(RepR(G), IsocR) be the set of isomorphism classes.
Similarly define Hom⊗(RepR(G),BunX) and Hom⊗(RepR(G),BunX).

Theorem 5.1.21. Let G be a reductive group over R. Then composition with E defines a faithful
functor

Φ : Hom⊗(RepR(G), IsocR)→ Hom⊗(RepR(G),BunX)

which induces a bijection

Hom⊗(RepR(G), IsocR)→ H1
ét(X,G)

on isomorphism classes.
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Proof. By Lemma 5.1.12.

IsocR BunX FilBunX GrBunX
E HN gr

is an equivalence onto its essential image. In particular the functor

Φ : Hom⊗(RepR(G), IsocR)→ Hom⊗(RepR(G),BunX)

is faithful and induces an injection on isomorphism classes. Thus the only thing left to prove that
each exact tensor functor

ω : RepR(G)→ BunX

factors as ω ∼= E ◦ ω′, where
ω′ : RepR(G)→ IsocR

is an exact tensor functor.
Consider

ω̃ : RepR(G) BunX FilBunX .ω HN

This is an exact tensor functor by Lemma 5.1.19. and thus we can apply Lemma 5.1.18. In
particular we get a series

U(ω̃) = U1(ω̃) ⊇ U2(ω̃) ⊇ ...

such that
gri U(ω̃) ∼= gri ω̃(Lie(G))

are semistable vector bundles of rank i > 0, i.e. gri U(ω̃) ∼= OX(i)d. By Lemma 4.1.7. we have
H1

ét(X, gr
i U(ω̃)) = 0. With the short exact sequence

0 Ui+1(ω̃) Ui(ω̃) gri(U(ω̃)) 0

we can argue inductively to conclude that H1
ét(X,U(ω̃)) = 0. But this means that the the U(ω̃)-

torsor Spl(ω̃) is already trivial, i.e. there exists a splitting

γ : RepR(G)→ GrBunX

over X. Since γ ∼= gr ◦ω̃, we get an induced natural isomorphism

α(V, r) : ω(V, r)→
⊕
i∈Z

gri ω̃(V, r)

between the vector bundle ω(V, r) and the associated graded vector bundle of its Harder-Narasimhan
filtration. Now objects of the form

⊕
i∈Z gr

i ω̃(V, r) can be regarded as isocrystals through the
equivalence of IsocR into its essential image (cf. Lemma 5.1.13.). Thus we may define

ω′ : RepR(G)→ IsocR, (V, r) 7→ E−1gr (
⊕
i∈Z

gri ω̃(V, r)).

The natural isomorphism α then induces a natural isomorphism

ω ∼= E ◦ ω′

and this is exactly what we wanted.

35



Lemma 5.1.22. The following diagram commutes

B(GLn,R,R)

BunnX/
∼=

⊗-exact functors/ ∼=

GLn,R -torsors/ ∼=

E(b)←[b
b 7→E◦Nb

b 7→Isom(ωcan,E◦Nb)

V7→Isom(On
X ,V)

ω(id)← [ω ω 7→Isom(ωcan ,ω)

(5.1)

Proof. The left triangle commutes by our construction of Nb and the right triangle commutes
trivially. It remains to show that the lower triangle commutes. Thus we have to prove that

Isom(ωcan, ω)
∼−→ Isom(On

X , ω(id)).

It suffices to find a morphism of torsors. Such a morphism is given by

α(U) : Isom(ωcan, ω)(U)
∼−→ Isom(On

X , ω(id))(U)

θ 7→ θ(Rn, id).

5.2 Basic elements and semistable G-bundles

Throughout this section G is a reductive group over R and we write g for Lie(G).

Definition 5.2.1. Let P be a G-torsor over X. P is called semistable, if the adjoint bundle

Ad(P) = P ×G,Ad g

is semistable.

Proposition 5.2.2. If Ad(P) is semistable, it has slope 0.

Proof. First note that
µ(Ad(P)) = rk(Ad(P)) · µ(det(Ad(P)))

by definition of the degree. Thus it is enough to show that

µ(det(Ad(P))) = deg(det(Ad(P))) = 0.

The adjoint representation factors through its adjoint group Gad, i.e. we have a commutative
diagram

G GL(g) Gm.

Gad

Ad det
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Thus det ◦Ad is trivial, since every morphism

Gad → Gm

is. We can conclude since

det(Ad(P)) ∼= det(P×AdGL(g)×GL(g)g) ∼= P×AdGL(g)×det

dim(g)∧
g ∼= P×det ◦Ad

dim(g)∧
g ∼= P×e

dim(g)∧
g

implies that det(Ad(P)) ∼= P ×e
∧dim(g) g ∼= OX is trivial.

For the next part we need the following theorem;

Theorem 5.2.3. Let G be a reductive group over an arbitrary field k. The inclusion

Z(G) ⊂ ker(Ad)

is an equality. In particular we get a faithful representation

Gad ↪−→ GL(Lie(G)).

Proof. [Gro70, Proposition 4.11.]

Lemma 5.2.4. An element b ∈ B(G,R) is basic if and only if Ad(b) ∈ B(GL(g),R) is pure (in
which case it will be automatically of slope 0).

Proof. First assume that b ∈ B(G,R) is basic. Then

vb : Gm → GC

has image inside Z(GC). Since

im(Z(GC)
Ad−−→ GL(gC)) = e,

this implies that
vAd(b) = Ad(vb) = e.

Thus Ad(b) is trivial, i.e. pure of slope 0.

Now assume that Ad(b) is pure. Thus vAd(b) factors through the center

Gm

Z(GL(gC)) GL(gC).

But since det ◦Ad is trivial, we get a commutative diagram

Gm

µdim(gC) Z(GL(gC)) Gm.

Ad ◦vb
e

det
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As there are no non-trivial morphisms Gm → µdim(gC), we conclude that Ad ◦vb must be trivial.
In particular, as the adjoint representation of the adjoint group is faithful by Theorem 5.2.3., the
composition

Gm,R
vb−→ G→ Gad

is trivial and by the universal property we see that Gm factors through Z(GC).

Lemma 5.2.5. Let P be a G-torsor. Then we have the following relations corresponding to the
diagram (5.1.)

Ad(bP)

Ad(P)

ωP ◦Ad

P ×Ad GL(g)

1.

2.

3.

Proof. It suffices to prove the three indicated relations.

1. Ad(bP) is given by composing bP with Ad. Thus the corresponding tensor functor will be
given by E ◦NbP ◦Ad and since ωP ∼= E ◦NbP , we conclude that ωP ◦Ad indeed corresponds
to Ad(bP),

2. This is straightforward from the equivalence between GL(g)-torsors and vector bundles,

3. We compute
(ωP ◦Ad)(g, id) = ωP(g,Ad) ∼= P ×Ad g = Ad(P).

The following proof is an elaborated version of the proof given in [Far17, Proposition 5.12.].

Lemma 5.2.6. Let P be a G-torsor over P̃1
R and bP the corresponding class inside B(G,R). Then

bP is basic if and only if P is semistable.

Proof. • By definition P is semistable if and only if Ad(P) is semistable

• Ad(P) is semistable if and only if bAd(P) is pure; this is true for arbitrary vector bundles

• By Lemma 5.2.5. bAd(P) = Ad(bP) and thus bAd(P) is pure if and only if Ad(bP) is pure

• By Lemma 5.2.4. Ad(bP) is pure if and only if bP is basic.

Theorem 5.2.7. Let b ∈ B(G,R). The following are equivalent

1. b is basic

2. the corresponding torsor P is semistable
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3. the morphism corresponding to RepR(G)
Nb−−→ IsocR

F−→ RepR(Gm) is central

and imply that

4. there exists a unique splitting γ : RepR(G) → GrBunX for the functor ω̃ : RepR(G)
Nb−−→

IsocR
E−→ BunX

HN−−→ FilBunX .

Proof. We showed the equivalence of 1. and 2. above.

To prove the equivalence of 1. and 3. one verifies that the composition

RepR(G)
Nb−−→ IsocR

F−→ RepC(Gm)

corresponds to
vb : Gm → GC

and thus the result follows from the definition of a basic element.

Now assume b is basic., then RepR(G) is endowed with a grading [DM18, Definition 5.1.]. This
means for (V, r) ∈ RepR(G), we have

(V, r) =
⊕
n∈Z

(Vn, rn).

Furthermore ω(Vn, rn) is a pure isocrystal of slope n. We define

γ : RepR(G)→ GrBunX , (V, r) 7→
⊕
n∈Z
E(ω(Vn, rn))

and this is easily seen to fulfill
ω̃ = fil ◦γ

since E(ω(Vn, rn)) is exactly the semistable subbundle of slope n. This functor is unique, since each
representation decomposes uniquely into subrepresentations for which the functor is determined.
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Chapter 6

U(1)-equivariant bundles on P̃1R

In this chapter we will examine the role of U(1)-equivariant bundles on X. The main motivation
is the following Theorem

Theorem. [Sch18, Proposition 6.1] The category of U(1)-equivariant semistable vector bundles on
P̃1
R is equivalent to the category of pure R-Hodge structures.

We want to extend this to a triangle

RepR(S)

Isoc
U(1)
R Bun

U(1)
X .

And in a more Tannakian style, for a reductive group G, this will draw a connection between
U(1)-equivariant semistable G-bundles on X and certain functors Hom(RepR(G),RepR(S)).

6.1 Equivariant sheaves and filtrations

The main interest of this section are equivariant sheaves. Our aim is to introduce the equivalences
in Table 1.
In this section all vector spaces are finite dimensional.

To give the general definition of an equivariant sheaf let G be a group scheme over a scheme S and
Z a scheme over S, with a G-action, i.e. a morphism

a : G×S Z → Z

satisfying the group action axioms.

Definition 6.1.1. A G-equivariant quasi-coherent sheaf on Z is a quasi-coherent sheaf F on Z
with an isomorphism of OG×Z modules

θ : a∗F → pr∗F

such that
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Quotient stack Vector bundles on the quotient Reference
[Gm/Gm] Complex vector space V Proposition 6.1.9.

[A1
C/Gm]

Complex vector space with a
filtration (V, F ∗V )

Lemma 6.1.8.

[P1
C/Gm]

Complex vector space with two
filtrations (V, F pV, F̄mV )

Lemma 6.1.16.

+semi-stability Complex Hodge structure Theorem 6.1.18.
[(X −∞)/U(1)] Real vector space V Proposition 6.1.23.

[X/U(1)]
Real vector space with a
filtration (V, F ∗VC)

Lemma 6.1.24.

+semi-stability Real Hodge structure Theorem 6.1.26.

Table 1

1. The diagram
(1G × a)∗pr∗1F pr∗12θ

// pr∗2F

(1G × a)∗a∗F

(1G×a)∗θ

OO

(m× 1X)∗a∗F

(m×1X)∗θ

OO

commutes,

2. The pullback
(e× 1Z)

∗θ : F −→ F

is the identity map.

Assume that X = Spec(A) is an affine scheme and G = Spec(B) is an affine group schemes over a
field k, then we can give an alternative description of an equivariant sheaf.

Definition 6.1.2. A G-equivariant module M is an A-module M with a morphism

γ :M →M ⊗k B

satisfying the comodule axioms and making the action map

A⊗k M →M

into a map of B comodules.

Lemma 6.1.3. Let X = Spec(A) be an affine scheme and G = Spec(B) be affine group scheme
over a field k. Then

• the category of G-equivariant modules and

• the category of G-equivariant quasi-coherent sheaves

are equivalent.

Proof. [KR14, Proposition 3.2.]

Example 6.1.4. Assume A is a graded ring over C. Then we may define a morphism

a : A→ A⊗C C[T, T−1]
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as the direct sum of the morphisms

an : An → An ⊗C C[T, T−1]
x 7→ x⊗ Tn.

One can check that a is indeed a coaction, thus a grading on A induces an action of Gm on Spec(A).
The converse is also true as the following Proposition shows.

Proposition 6.1.5. Let a : Gm × X → X be an action on an affine scheme. Then X is the
spectrum of a Z-graded ring and the action is as in the above example.

Proof. [Sta18, Tag 03LE].

Example 6.1.6. The affine line A1
C = Spec(C[T ]) has a canonical grading, where deg(Tn) = n. This

corresponds to the action

Gm × A1
C → A1

C

(t, x) 7→ tx.

Lemma 6.1.7. The category of Gm-equivariant quasi-coherent sheaves on A1
C is equivalent to the

category of Z-graded C[T ]-modules.

Proof. [Sta18, Tag 03LE].

Lemma 6.1.8. The category of Gm-equivariant vector bundles on A1
C is equivalent to the category

of filtered vector spaces.

Proof. We will only sketch the constructions, a full proof can be found in [Sim96, Section 5].

Let V = B̃ be a Gm-equivariant vector bundle. We define for m = (T − 1) the vector space
V := B/mB = Bm/mBm. This comes with the morphism

q : B → V.

As B is a Gm-equivariant comodule, it comes with a grading

B =
⊕
n∈Z

Bn.

Now the filtration is defined as
F pV = im(q : B−p → V ). (6.1)

Conversely start with a vector space and a filtration (V, F ∗V ), then the Rees module is defined as

Λ =
∑
p∈Z

z−pF pV ⊂ V ⊗C C[z, z−1].

This inherits a grading from V ⊗C C[z, z−1], i.e. for z−pv ∈ Λ its degree is −p, which is compatible
with the grading of C[z].

In what follows we want to approach the above Lemma from a different angle, using the philosophy
of Beauville-Laszlo’s theorem. This will be essential, when we switch to the twistor case.
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Proposition 6.1.9. The category of Gm-equivariant vector bundles on Gm is equivalent to the
category of vector spaces.

Proof. This is a general consequence of the fact that the action of Gm on itself is simply transitive.

In this specific case we can even give an explicit isomorphism. Let V = B̃ be a Gm-equivariant
vector bundle. Then

B → B/(T − 1)B ⊗C C[T, T−1]

sending an element b ∈ Bn to [b]⊗ Tn is a Gm-equivariant isomorphism.

Heuristically speaking this means that we should be able to obtain every Gm-equivariant bundle on
A1
C by gluing a trivial Gm-equivariant bundle on Gm and a Gm-equivariant bundle on an infinites-

imally small neighbourhood around 0 ∈ A1
C. The first step to making this notion precise is the

Theorem by Beaville and Laszlo. Before introducing the theorem of interest, we need the notion of
cartesian diagrams of categories.

Definition 6.1.10. Let A,B,C,D be categories with functors fitting into the following diagram

E

A B

C D

K1

K2

L

H1

H2 F

G

(6.2)

together with a natural isomorphism

α : F ◦H2 → G ◦H1.

Then the above diagram is cartesian, if it has the following universal property:

Given a category E with two functors K1,K2, as indicated above, and a natural isomorphism

β : G ◦K2 → F ◦K1,

there exists an unique functor L : E → A, such that

• K1 = H1 ◦ L, K2 = H2 ◦ L

• β = α ◦ L

Theorem 6.1.11. Let A be a ring, f a non-zero divisor, and Â its (f)-adic completion. Let M(A)
be the category of a A-modules and Mf (A) be the full subcategory of f -regular modules, i.e. modules,
such that multiplication with f is injective on M . Then the following diagram of categories

Mf (A) Mf (Â)

M(Af ) M(Âf )

is cartesian.
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Proof. [BL95]

Theorem 6.1.12. Let Z be a smooth curve over an arbitrary base field k, p a closed point, and
Z∗ := Z − {p}. Let D := ÔZ,p be the the infinitesimal neighbourhood around p, D0 its fraction
field, and r ∈ N. Then the following diagram of categories

Bunr(Z) Bunr(Spec(D))

Bunr(Z∗) Bunr(Spec(D0))

is cartesian.

Proof. This is just a global application of Theorem 6.1.11.

Construction 6.1.13. More generally we can glue G-equivariant vector bundles on Z∗ and D, if Z∗
is stable under G. First notice that this problem is local, thus we can reduce the problem to the
affine case, i.e. Z = Spec(A), p = (f) for some f ∈ A and thus Z∗ = Spec(Af ).

Assume that we are given

• a G-equivariant projective Af module M

• a G-equivariant projective D module Λ

• a G-equivariant isomorphism ϕ :M ⊗Af
D0 → Λ⊗D D0,

then we may use Theorem 6.1.12. to glue the G-equivariant structure. First we glue the underlying
modules by applying Theorem 6.1.12. to get a projective A-module N .

To glue the equivariant structures we want to apply Theorem 6.1.12. Consider A⊗O(G) and the
non zero-divisor f ⊗ 1. Then we get a cartesian diagram

Mf (A⊗O(G)) Mf (Â⊗O(G))

M(Af ⊗O(G)) M(Âf ⊗O(G))

F

G

It is sufficient to construct isomorphisms

θf : a∗(N ⊗A Af )→ pr∗(N ⊗A Af ) , θD : a∗(N ⊗A D)→ pr∗(N ⊗A D)

in M(Af ⊗O(G)) and Mf (Â⊗O(G)) such that the diagram

G(a∗(N ⊗A Af )) G(pr∗(N ⊗A Af ))

F (a∗(N ⊗A D)) F (pr∗(N ⊗A D))

G(θf )

G(θD)

commutes; here the vertical arrows are the ones obtained canonically from restriction. Thus we get
an uniquely determined isomorphism

θ : a∗N → pr∗N.
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Obviously a G-equivariant module on A induces a datum as above. And as the above isomorphism
is always uniquely determined by its datum, we have;

Proposition 6.1.14. In the above notation the following are equivalent

1. a G-equivariant A-module N

2. a datum (M,Λ, ϕ)

Now we may approach Lemma 6.1.8. with this new approach:

To give a Gm-equivariant vector bundle on A1
C is equivalent to give

• a Gm-equivariant vector bundle M on Gm

• a Gm-equivariant vector bundle Λ on Spec(D) = Spec(C[[z]])

• a Gm-equivariant isomorphism Λ⊗D D0 ∼−→M ⊗C[z,z−1] D
0.

The crucial observation now is that every Gm-equivariant vector bundle on Gm is trivial by Propo-
sition 6.1.9. Thus we can summarize the above datum to giving

• a Gm-equivariant lattice Λ ⊂ V ⊗C C((z)).

These are of the form
Λ =

∑
p∈Z

z−pF pV [[z]]

and equivalent to a filtration of V . Going backwards we can construct a Gm-equivariant vector
bundle on A1

C from a filtration.

As the next step we also want to consider Gm-equivariant vector bundles on P1
C. There is a natural

action of Gm on P1
C:

a : Gm × P1
C → P1

C

(t, [a : b]) 7→ [ta : b].

Lemma 6.1.15. The category of Gm-equivariant vector bundles on P1
C is equivalent to the category

of vector spaces with two filtrations.

Proof. Again we sketch the constructions. Start with a Gm-equivariant sheaf on P1
C. By restriction

we get

• a Gm-equivariant sheaf on A1
C

• a Gm-equivariant sheaf on P1
C − {0}.

These are, by Lemma 6.1.8., equivalent to two filtrations.

Conversely start with two filtrations F ∗V, F̄ ∗V . Again by lemma 6.1.8. these induce two vector
bundles V1 and V2 on A1

C. By the inversion isomorphism A1
C
∼−→ P1

C − {0}, we may view V2 as a
vector bundle on P1

C − {0}. Now we glue these modules to get a vector bundle on P1
C as follows.

By Proposition 6.1.9. we can choose Gm-equivariant trivializations

αi : Vi |Gm

∼−→ V ⊗OGm .
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The isomorphism

V1
α1−→ V ⊗OGm

id⊗z−1

−−−−→ V ⊗OGm

α−1
2−−→ V2

is Gm-equivariant and thus we can glue these to get the desired Gm-equivariant vector bundle on
P1
C.

Remark 6.1.16. Again one may alternatively argue by Beauville-Laszlo. One first extends the trivial
Gm-equivariant sheaf on Gm to A1

C via the first filtration, then one extends it from A1
C to P1

C by
extending it locally from Gm to P1

C − {0} via the second filtration. The resulting Gm-equivariant
sheaf is isomorphic to the one constructed in the proof above.

It seems natural to ask whether certain conditions on the filtration lead to certain Gm-equivariant
vector bundles.

Let V be a complex vector space with two filtrations F ∗V, F̄ ∗V and define

Hp,q := F pV ∩ F̄ qV.

We say that the two filtrations define a pure Hodge structure of weight n, if the subspaces Hp,q ⊂ V
define a pure complex Hodge structure of weight n on V , i.e.

V =
⊕

p+q=n

Hp,q.

Theorem 6.1.17. Two filtrations define a Hodge structure if and only if the corresponding Gm-
equivariant vector bundle on P1

C is semistable.

Proof. [Sim96, Section 5]

Remark 6.1.18. Here a Gm-equivariant vector bundle is semistable, if the underlying vector bundle
is.

Now after deriving this Theorem in the complex case, we would like to use descent to get real Hodge
structures from certain equivariant vector bundles. As to be expected this is done by considering
semistable vector bundles on X. We first construct a group action on X.

Construction 6.1.19. The following morphism

g : Gm × P1
C → Gm × P1

C

(t, [a : b]) 7→ (
1

t̄
, [−b̄ : ā]).

is a descent datum for Gm×P1
C and the descent is given by U(1)×X (as Gm descends to U(1) via

the morphism σU(1) : t 7→ 1
t̄ ).

It is then straightforward to check that the diagram

Gm × P1
C P1

C

Gm × P1
C P1

C

a

g f

a

is commutative. Thus it descends to an action

U(1)×X X.
[a]
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Lemma 6.1.20. The U(1)-action on X∗ = X − {∞} is simply transitive.

Proof. We want to show that

U(1)×X∗ −→ X∗ ×X∗

(u, x) 7→ ([a](u, x), x)

is an isomorphism. Going back to the complex case, we obviously have a simply transitive action
of Gm on P1

C − {0,∞}, i.e.

Gm × (P1
C − {0,∞}) −→ (P1

C − {0,∞})× (P1
C − {0,∞})

(λ, z) 7→ (a(λ, z), z).

is an isomorphism. If we endow the left hand side with the descent datum σU × f and the right
hand side with f × f , the above isomorphism descends. Since (P1

C − {0,∞}, f |P1
C−{0,∞}

) descends
to X∗, we get the desired isomorphism.

Now we investigate the neighbourhood around ∞ ∈ X:

Lemma 6.1.21. The infinitesimal neighbourhood D = ÔX,∞ around ∞ admits an isomorphism

ρ : C[[t]]→ D.

Proof. Since the local ring (OX,∞,m∞) is noetherian, regular, of dimension one, with residue field
C, so will be its completion (ÔX,∞, m̂∞). But by Cohen’s structure theorem [Sta18, Tag 0C0S] this
already implies that there exists an isomorphism

ρ : C[[t]]→ D.

We can even do better and give an explicit realization of the isomorphism ρ.

As (D, m̂∞) is a complete local ring, it is Henselian. Thus we can find a solution for the polynomial
f(X) = X2 + 1 ∈ D[X] as we can find a solution inside

D/m̂∞ ∼= OX,∞/m∞ ∼= C

and obviously f ′ ̸= 0 inside D/m̂∞. This yields an injection

C→ D.

We can upgrade this injection by sending t to a, which is well-defined, as D is (a)-adically complete,
to get an injection

ρ : C[[t]]→ D.

Finally this is surjective by [Sta18, Tag 0315 (1)].

One sees that the geometric picture is quite similar to the complex case. The U(1)-action has one
fixed point ∞ ∈ X and acts simply transitive on the complement X − {∞}. Thus the preceding
ideas, as explained in e.g. Proposition 6.1.14., apply here.
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Proposition 6.1.22. The category of U(1)-equivariant vector bundles on X∗ is equivalent to the
category of real vector spaces.

Proof. As the action is simply transitive, [X∗/U(1)] is represented by Spec(R) and the claim follows.

Lemma 6.1.23. The category of U(1)-equivariant vector bundles on X is equivalent to the category
of real vector space with a filtration on its complexification.

Proof. Here we apply Theorem 6.1.12. Thus an U(1)-equivariant vector bundle on X is equivalent
to

• an U(1)-equivariant vector bundle M on X∗

• an U(1)-equivariant vector bundle Λ on Spec(D) = Spec(C[[z]])

• an U(1)-equivariant isomorphism Λ⊗D D0 ∼−→M ⊗OX(X∗) D
0.

But by Lemma 6.1.20. U(1)-equivariant vector bundles on X∗ are always trivial, i.e. we can find
an U(1)-equivariant isomorphism

M ∼= V ⊗R OX(X∗).

Thus the above datum reduces to giving

• an U(1)-equivariant lattice Λ ⊂ V ⊗R C((z)) ∼= VC ⊗C C((z)).

As we already have seen before, this is equivalent to a filtration on VC.

Remark 6.1.24. Thus the above lemma can be seen as a descent version of the prior case.

Finally, it is natural to ask when the pair (V, F ∗VC) yields a pure real Hodge structure.

Theorem 6.1.25. The category of pure Hodge structures is equivalent to the category of U(1)-
equivariant semistable vector bundles on X.

Proof. [Sch18, Proposition 6.1.]

The functor
R : RepR(S)→ Bun

U(1)
X

inducing the equivalence sends a pure Hodge structure (V, V p,q) to the U(1)-equivariant lattice

Λ =
∑
p∈Z

t−p(F p
HodV )[[t]]

and an application of Lemma 6.1.23. yields the desired U(1)-equivariant vector bundle. Finally we
can extend this construction to direct sums of pure Hodge structures.

6.2 U(1)-equivariant isocrystals

In Chapter 2 we presented an ad-hoc definition of IsocU(1)
R , which in this section will be motivated.

Our aim in this section is to construct a functor

EU(1) : Isoc
U(1)
R → Bun

U(1)
X .
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This functor should of course be compatible with our functor E : IsocR → BunX . Furthermore we
will show that this functor is compatible with the construction in Theorem 6.1.25., in the sense
that (up to natural isomorphism) the following diagram commutes

RepR(S)

Isoc
U(1)
R Bun

U(1)
X .

RH

EU(1)

Recall the definition of the category Isoc
U(1)
R .

Definition 6.2.1. • The objects are isocrystals (V, ϕ) ∈ Ob(IsocR) with a comodule map γV :
V → V ⊗C C[T, T−1] respecting the grading, i.e. γV (Vn) ⊂ Vn ⊗ C[T, T−1], such that the
following diagram commutes

V V ⊗C C[T, T−1]

V V ⊗C C[T, T−1].

γV

ϕ ϕ⊗σV

γV

• A homomorphism between two objects is a homomorphism f ∈ HomIsocR(V,W ), such that

V V ⊗C C[T, T−1]

W W ⊗C C[T, T−1]

γV

f f⊗id

γW

commutes.

Construction 6.2.2. Choose an object (V, ϕ, γ) in Isoc
U(1)
R of slope n. Recall that we have an

equivalence
Bun(π : P1

C → X)
∼−→ BunX .

In the last chapter we constructed an object (E(V ), v : f∗E(V )→ E(V )) ∈ Ob(Bun(π : P1
C → X));

write [E(V )] for its image in BunX . We want to obtain an isomorphism

θ̃ : [a]∗[E(V )]
∼−→ [prX ]∗[E(V )].

Assume that we have a commutative diagram of the form

a∗E(V ) pr∗ E(V )

g∗a∗E(V ) g∗ pr∗ E(V )

θ

g∗θ

a∗v pr∗ v (6.3)

where by abuse of notation we identified g∗a∗E(V ) ∼= a∗f∗E(V ) and g∗ pr∗ E(V ) ∼= pr∗ f∗E(V ).
Then

• the pair (a∗E(V ), a∗v : g∗a∗E(V ) → a∗E(V )) descends to an object [a∗E(V )], which can be
identified with [a∗][E(V )] (resp.for pr∗ E(V ))
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• the morphism θ : a∗E(V )→ pr∗ E(V ) descends to a morphism [θ] : [a∗E(V )]→ [pr∗ E(V )].

The second point is a straightforward consequence of descent of morphisms. And up to the above
identification, this yields the required θ̃.

Proposition 6.2.3. In the above construction we can identify

[a∗][E(V )]
∼−→ [a∗E(V )].

Proof. First reduce this problem to the affine case, as the statement is local. The statement follows
then from the following general isomorphism:

Assume we have C-algebras A,B, such that A is an B-module. Furthermore assume that these
have real forms denoted by [A], [B], [M ]. Then

M ⊗B A ∼= ([M ]⊗ C)⊗[B]⊗C A ∼= [M ]⊗[B] A ∼= [M ]⊗[B] [A]⊗ C

and this isomorphism preserves the descent data, i.e. the antiholomorphic involutions .

Thus we will be interested in constructing diagrams of the form (6.3). We now describe how to
construct these out of objects in Isoc

U(1)
R .

Construction 6.2.4. We will construct an isomorphism

θi : a
∗E(V ) |Wi→ pr∗ E(V ) |Wi

on the affine opens W1 = A1
C and W2 = P1

C − {∞}. They will agree on the intersection, thus we
can glue these to a global isomorphism on Gm × P1

C. We first define a Gm-equivariant structure of
E(V ) on A1

C.

The comodule structure on Vn induces a grading Vn =
⊕

m∈Z V
m
n . For homogeneous elements

w ∈ Vn define

θ1 :
(
Vn ⊗

1

zn
C[z]

)
⊗a,C[z] (C[z]⊗ C[T, T−1])→

(
Vn ⊗

1

zn
C[z]

)
⊗pr,C[z] (C[z]⊗ C[T, T−1])

w ⊗ zh ⊗ 1⊗ 1 7→ w ⊗ zh ⊗ 1⊗ T deg(w)+h.

This is easily generalized to a well-defined morphism between C[z] ⊗ C[T, T−1]-modules. Let us
now evaluate diagram (6.3) at W1

(V ⊗ 1
znC[z])⊗C[z],a (C[z]⊗ C[T, T−1]) (V ⊗ 1

znC[z])⊗C[z],pr (C[z]⊗ C[T, T−1])

(V ⊗ C[1z ])⊗C[ 1
z
],a◦g (C[z]⊗ C[T, T−1]) (V ⊗ C[1z ])⊗C[ 1

z
],pr◦g (C[z]⊗ C[T, T−1]).

θ1

g∗θ1

a∗v pr∗ v
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Now we describe the individual maps

a∗v : (V ⊗ C[
1

z
])⊗C[ 1

z
],a◦g (C[z]⊗ C[T, T−1])→ (V ⊗ 1

zn
C[z])⊗C[z],a (C[z]⊗ C[T, T−1])

w ⊗ p(1
z
)⊗ 1⊗ 1 7→ ϕ(w)⊗ p̄(−z) · 1

zn
⊗ 1⊗ 1

pr∗ v : (V ⊗ C[
1

z
])⊗C[ 1

z
],pr◦g (C[z]⊗ C[T, T−1])→ (V ⊗ 1

zn
C[z])⊗C[z],pr (C[z]⊗ C[T, T−1])

w ⊗ p(1
z
)⊗ 1⊗ 1 7→ ϕ(w)⊗ p̄(−z) · 1

zn
⊗ 1⊗ 1

g∗θ1 : (V ⊗ C[
1

z
])⊗C[ 1

z
],a◦g (C[z]⊗ C[T, T−1])→ (V ⊗ C[

1

z
])⊗C[ 1

z
],pr◦g (C[z]⊗ C[T, T−1])

w ⊗ zm ⊗ 1⊗ 1 7→ v ⊗ zm ⊗ 1⊗ T−(deg(w)+m).

And we have

Proposition 6.2.5. The above diagram is commutative.

This is a brute force calculation and the essential point is the following: For a homogeneous w ∈ V
we have in the one direction

θ1(a
∗v(w ⊗ 1⊗ 1⊗ 1)) = θ1(ϕ(w)⊗

1

zn
⊗ 1⊗ 1) = ϕ(w)⊗ 1

zn
⊗ 1⊗ T deg(ϕ(w))−n

and in the other

pr∗ v(g∗θ1(w ⊗ 1⊗ 1⊗ 1)) = pr∗ v(w ⊗ 1⊗ 1⊗ T− deg(w)) = ϕ(w)⊗ 1

zn
⊗ 1⊗ T−deg(w).

And these two are equal, since by definition

ϕ(V deg(w)) ⊂ V n−deg(w).

In a similar way we can define the diagram on the other affine open W2 and a similar calculation
shows again that the diagram will be commutative.

We summarize the result of the above constructions;

Lemma 6.2.6. There exists a functor

EU(1) : Isoc
U(1)
R → Bun

U(1)
X .

making the following diagram commutative

Isoc
U(1)
R Bun

U(1)
X

IsocR BunX .

Forget

EU(1)

Forget

E

Proof. We first treat the case of pure isocrystals by combining the previous two construction.

Construction 6.2.4. gives a commutative diagram

a∗E(V ) pr∗ E(V )

g∗a∗E(V ) g∗ pr∗ E(V )

θ

g∗θ

a∗v pr∗ v
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which by Construction 6.2.2. descends to an U(1)-equivariant vector bundle.

For functoriality one checks that a morphism f between two U(1)-equivariant isocrystals induces
a Gm-equivariant morphism of the underlying vector bundles in Bun(π : P1

C → X), which then
descends to an U(1)-equivariant morphism in BunX .

Finally, the above constructions are compatible with direct sums and thus we can generalize to the
case of general isocrystals.

As announced above, we will now show that the following diagram commutes.

RepR(S)

Isoc
U(1)
R Bun

U(1)
X .

RH

EU(1)

The strategy is to compare the resulting U(1)-equivariant vector bundles as Gm-equivariant sheaves
on P1

C with their descent data. In particular Lemma 6.1.15. will be of use here.

Throughout this section let (V, ϕ, γ) be a pure U(1)-equivariant isocrystal of slope n, i.e. a pure
isocrystal endowed with a comodule structure γ : V → V ⊗ C[T, T−1] or equivalently a decompo-
sition

V =
⊕
m∈Z

V m

which fulfills
ϕ(V m) ⊂ V n−m.

We begin by inspecting the filtrations induced by EU(1)(H(V, V p,q)).

Lemma 6.2.7. The Gm-equivariant sheaf EU(1)(H(V, V p,q)) corresponds

• to the filtration F p
HodV =

⊕
i≥p V

i,n−i on A1
C

• to the filtration F p
HodV =

⊕
i≥p V

n−i,i on P1
C − {∞}.

Proof. We start with the A1
C case. The equivariant structure gives a decomposition

VC ⊗
1

zn
C[z] =

⊕
m∈Z

Bm.

Furthermore we have the quotient map

q : VC ⊗
1

zn
C[z]→ VC ⊗ (

1

zn
C[z])/(z − 1) ∼= VC

By Construction 6.2.4. we see that the degree m part is given by

Bm = ⟨i ≥ −n | zi · vn−(m−i),m−i⟩.

According to lemma 6.1.8., we have

F pVC = im(q : B−p → VC).
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Thus

F pVC = ⟨i ≥ −n | vn−(−p−i),−p−i)⟩ = ⟨i ≥ 0 | vp+i,(n−p)−i)⟩ =
⊕
i≥p

V i,n−i = F p
HodV.

The P1
C − {∞} case is treated similarly. In this case we have the quotient map

q : VC ⊗ C[
1

z
]→ VC ⊗ C[

1

z
]/(

1

z
− 1) ∼= VC.

The degree m part is given by

Bm = ⟨i ≥ 0 | 1
zi
· vn−(m+i),m+i⟩.

Now the filtration is given by
F pVC = im(q : Bp → VC).

Thus
F pVC = ⟨i ≥ 0 | vn−(p+i),p+i⟩ =

⊕
i≥p

V n−i,i = F p
HodV .

Now we turn to R(V, V p,q). We have the following commutative diagram

Spec(ÔP1
C,∞

)
⨿

Spec(ÔP1
C,0

) P1
C

Spec(ÔX,∞) X

π0
⨿

π∞ π

or more explicitly by Lemma 6.1.21.

Spec(C[[t0]])
⨿

Spec(C[[t∞]]) P1
C

Spec(C[[t]]) X.

π0
⨿

π∞ π

Upon fixing a choice for the root of f(x) = x2 + 1 at the residue field of ∞ ∈ X, we find that
π0

⨿
π∞ = id

⨿
σ, i.e. the second projection is the complex conjugation.

Lemma 6.2.8. The Gm-equivariant sheaf R(V, V p,q) corresponds

• to the filtration F p
HodV =

⊕
i≥p V

i,n−i on A1
C

• to the filtration F p
HodV =

⊕
i≥p V

n−i,i on P1
C − {∞}.

Proof. Recall that the U(1)-equivariant structure is given via the lattice

Λ =
∑
p∈Z

t−pF p
HodV [[t]]
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and pulling back this lattice via π0
⨿
π∞, we get two lattices at the infinitesimal neighbourhood

around 0 and ∞:
Λ0 =

∑
p∈Z

t−p0 F p
HodV [[t0]] , Λ∞ =

∑
p∈Z

t−p∞ F p
HodV [[t∞]].

The lattices are exactly the the restriction of the Gm-equivariant vector bundle

R(V, V p,q)

to 0 and ∞ by the above commutative diagram.

Comparing the above two Lemmas, we see that R(V, V p,q) and EU(1)(H(V, V p,q)) yield the same
filtrations. If we can find Gm isomorphisms

EU(1)(H(V, V p,q)) |Gm
∼= R(V, V p,q) |Gm

EU(1)(H(V, V p,q)) |
Spec(ÔP1C,∞)

∼= R(V, V p,q) |
Spec(ÔP1C,∞)

EU(1)(H(V, V p,q)) |
Spec(ÔP1C,0

)
∼= R(V, V p,q) |

Spec(ÔP1C,0
)

which glue together and respect the descent data (i.e. the complex conjugation), then we are done.
The first isomorphism is given by

β : VC ⊗ C[T, T−1] ∼−→ VC ⊗ C[T, T−1]
vp,q ⊗ Tm 7→ vp,q ⊗ Tm+q.

and one checks that this respects the descent datum.

On the lattice at 0 we can define the morphism β∗0 to make the following diagram commute

VC ⊗ C((t0)) VC ⊗ C((t0))

VC ⊗ 1
tn0
C[[t0]]

∑
p∈Z t

−p
0 F p

HodV [[t0]].

β0

β∗
0

Here β0 is the morphism β restricted to the punctured infinitesimal neighbourhood. For ∞ ∈ P1
C

we get a similar diagram

VC ⊗ C((t∞)) VC ⊗ C((t∞))

VC ⊗ C[[t∞]]
∑

p∈Z t
−p
∞ F p

HodV [[t∞]].

β∞

β∗
∞

Proposition 6.2.9. The above maps glue together and commute with the descent data.

Proof. The maps glue together by the their construction, i.e. by the commutativity of the above
diagrams.
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Commutativity with the descent data can be checked locally, i.e. for β, β∗0 , and β∗∞. For example

VC ⊗ C[T, T−1] VC ⊗ C[T, T−1]

VC ⊗ C[T, T−1]⊗f C[T, T−1] VC ⊗ C[T, T−1]⊗f C[T, T−1]

β

ϕ⊗δn
f∗β

σ⊗δn

commutes, if σ denotes the complex conjugation on VC, since ϕ =
(

1
−1

)
◦ σ (cf. Construction

2.1.11.). The other cases are treated similarly.

6.3 Descent via semistable G-bundles

Definition 6.3.1. Let V be a vector bundle on X with an U(1)-equivariant structure. A subbundle

i :W ↪−→ V

is U(1)-equivariant, if W has as U(1)-equivariant structure, such that the inclusion is U(1)-
equivariant.

Remark 6.3.2. Equivalently we can require that in the diagram

a∗W a∗V

pr∗W pr∗ V

a∗i

θ

pr∗ i

the morphism θ ◦ a∗i : a∗W → pr∗ V factors through pr∗W.

Definition 6.3.3. The category of U(1)-equivariant graded vector bundles GrBun
U(1)
X is the cate-

gory of graded vector bundles with an U(1)-equivariant structure on each direct summand.

Definition 6.3.4. The category of U(1)-equivariant filtered vector bundles FilBun
U(1)
X is the cat-

egory of filtered vector bundles with an U(1)-equivariant structure on the FnV that respects the
inclusion Fn+1V ⊂ FnV.

Now we want to construct U(1)-equivariant versions of the functors we encountered in Section 5.2.

Construction 6.3.5. First recall the functor

gr : FilBunX → GrBunX , FnV 7→
⊕
n∈Z

FnV/Fn+1V.

There is a straightforward way to define a functor

grU(1) : FilBun
U(1)
X → GrBun

U(1)
X .

Namely if W ⊂ V is a U(1)-equivariant subsheaf, then

a∗W a∗V a∗V/a∗W

pr∗W pr∗ V pr∗ V/ pr∗W

a∗i

pr∗ i
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endows V/W with an U(1)-equivariant structure. Here we use that for quasi-coherent sheaves
a∗(V/W) ∼= a∗V/a∗W (respectively for pr∗). We define grU(1) to be gr on the underlying vector
bundles and by the above we can endow each direct summand with an U(1)-equivariant structure.

Lemma 6.3.6. Let V be an U(1)-equivariant vector bundle. The Harder-Narasimhan filtration of
the underlying vector bundle

0 = V0 ⊂ V1 ⊂ ... ⊂ Vn = V

is U(1)-equivariant, i.e. Vi ⊂ V is an U(1)-equivariant subbundle.

Proof. We will show that the Harder-Narasimhan filtration on P1
C is Gm-equivariant. The above

result is then a consequence of descent.

First of all we check that this statement is true for Gm(C), i.e. we have an action

Gm(C)× P1
C → P1

C

which on rings is induced by the isomorphism

λ∗ : C[a, b]→ C[a, b]

which sends a to λa. In this case λ∗W ∼= W and λ∗ preserves semistable bundles. Thus it also
preserves the Harder-Narasimhan filtration.

The general case is deduced since Gm(C) is dense inside Gm and being an U(1)-equivariant sub-
bundle is equivalent to the condition that two subbundles θ(a∗i(a∗W )) = pr∗ i(pr∗W) agree.

Proposition 6.3.7. There exists a functor

HNU(1) : Bun
U(1)
X → FilBun

U(1)
X

such that
Bun

U(1)
X FilBun

U(1)
X

BunX FilBunX

HNU(1)

Forget Forget

HN

commutes.

Proof. This is a consequence of the above lemma.

Lemma 6.3.8. The composite functor

Isoc
U(1)
R Bun

U(1)
X FilBun

U(1)
X GrBun

U(1)
X

EU(1) HNU(1) grU(1)

is an equivalence of exact categories from IsocR to its essential image in GrBunX , which consists
of graded vector bundles

(E , θ) =
⊕
i∈ 1

2
Z

(Ei, θi)

such that Ei is semistable of slope i.
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Proof. We have seen that EU(1) ∼= R◦H. By Theorem 6.1.25. R is an equivalence when restricted
to pure Hodge structures, i.e. EU(1) is an equivalence when restricted to pure isocrystals.

Theorem 6.3.9. The bijection

{basic elements Hom(RepR(G), IsocR)} ←→ {semistable G-bundles }/ ∼=

from Theorem 5.2.7. admits an U(1)-equivariant version

{basic elements Hom(RepR(G), Isoc
U(1)
R )} ←→ {semistable U(1)-equivariant G-bundles}/ ∼=

Proof. Injectivity follows from Lemma 6.3.8.

To prove surjectivity, we use Theorem 5.2.7. Let

ω : RepR(G)→ Bun
U(1)
X

be semistable, i.e. composing with the forgetful functor

For : BunU(1)
X → BunX

yields a semistable bundle. Now for

HN ◦For ◦ ω : RepR(G)→ FilBunX

there is a unique splitting
γ : RepR(G)→ GrBunX .

In particular there is a natural isomorphism

α : γ → gr ◦HN ◦For ◦ ω.

By the prior results we have a commutative diagram

Bun
U(1)
X BunX

GrBun
U(1)
X GrBunX

For

grU(1) ◦HNU(1) gr ◦HN

For

.

This means for any object (V, r) ∈ RepR(G) we can endow (gr ◦HN ◦For ◦ ω)(V, r) with an U(1)-
structure and, via the isomorphism α, we can also endow γ(V, r) with an U(1)-structure, i.e. we
get a functor

γU(1) : RepR(G)→ GrBun
U(1)
X

and this comes with a natural isomorphism

αU(1) : γU(1) → grU(1) ◦HNU(1) ◦ω.

In the spirit of Theorem 5.2.18. we can now define

ω′ : RepR(G)→ Isoc
U(1)
R , (V, r) 7→ (EU(1)

gr )−1(
⊕
i∈Z

(grU(1))i(HNU(1) ◦ω(V, r)).

And then αU(1) gives an isomorphism

ω ∼= EU(1) ◦ ω′.
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Chapter 7

Shimura data in terms of B(G,R)

Let G be a reductive group over R. For a homomorphism

h : S→ G

write Xh = {ghg−1 | g ∈ G(R)} for the set of its G(R) conjugacy class. Furthermore we denote by
X(GC) the set of G(C)-conjugacy classes of cocharacters µ : Gm → GC.

Recall the first axiom

• SV1: The Hodge structure on Lie(GC) induced by Ad ◦h is of type (1,−1), (0, 0), (−1, 1).

The aim of this chapter is to get a map{
Xh | h : S→ G fulfilling SV1

}
−−−→

{
(b, [µ]) ∈ B(G,R)bsc × X(GC) | µ minuscule, κG(b) = [µ]

}
and show how to refine it to possibly get a bijection.

7.1 Definition of the map

Construction 7.1.1. There is a natural choice for an element

γ ∈ B(S,R),

which will be motivated later on. First recall that there is an isomorphism

SC ∼= Gm ×Gm.

This isomorphism endows Gm ×Gm with the involution

σS : Gm ×Gm → Gm ×Gm

(z1, z2) 7→ (z̄2, z̄1).

Then consider the following diagram

0 Gm(C) W Γ 0

0 Gm(C)×Gm(C) (Gm(C)×Gm(C))⋊ Γ Γ 0

id×id α
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where α(j) = (1,−1). It is not difficult to check that the above diagram commutes. The class of
this diagram is [γ] ∈ B(S,R). It is straight forward that γ is basic, since Gm ×Gm is abelian.

Theorem 7.1.2. The assignment{
Xh | h : S→ G fulfilling SV1

}
−−−→

{
(b, [µ]) ∈ B(G,R)bsc × X(GC) | µ minuscule, κG(b) = [µ]

}
which sends Xh to µ = hC(z, 1) and [b] = [h∗(γ)] is well-defined.

We break up the proof of this theorem into several pieces. Also we set µ = hC(z, 1) and [b] = [h∗(γ)]
for the rest of the section.

Lemma 7.1.3. In the above notation µ is minuscule, i.e. only the weights −1, 0, 1 occur in the
representation

Gm
µ−→ GC

AdC−−→ GL(Lie(G)C)

Proof. A representation
h : S→ GL(V )

corresponds to the decomposition VC =
⊕

(p,q)∈Z2 V p,q, such that

hC(z1, z2)v = z−p1 z−q2 for v ∈ V p,q.

Thus given a decomposition V = V 1,−1⊕V 0,0⊕V −1,1 implies that for the representation of hC(z, 1)
only the weights 1, 0,−1 occur.
The claim in the lemma follows then from the special case V = Lie(G).

Lemma 7.1.4. In the above notation [b] is basic.

Proof. Consider the following commutative diagram

Gm GC GL(Lie(GC)).

Gad
C

hC|Gm

q

Ad

[Ad]

If we can show that the composition in the upper row is trivial, then, since Gad
C = GC/Z(GC)

embeds into GL(Lie(GC)), q ◦hC |Gm (cf. Theorem 5.2.3.) is trivial as well and thus hC |Gm factors
through Z(GC).

As in the proof of the Lemma above we can see that Gm acts on the subspaces Lie(GC)
p,q by mul-

tiplication by zq−p. But by SV1 the only subspaces that occur are of weight (1,−1), (0, 0), (−1, 1)
and Gm acts trivially on all of them. Hence Gm acts trivially on Lie(GC) and we are done.

Lemma 7.1.5. In the above notation we have κG([b]) = [µ].

Proof. We prove this theorem in three steps analogous to Construction 3.3.9.
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1. G = T is a torus. In this case κG = c−1 . Thus we have to check that c(µ) = h∗(γ) inside
B(T,R). We recall the following construction from Section 3.3.:

X∗(T )

B(T,R) X∗(T )
Γ

H1(W,T (C)) Hom(C∗, T (C))Γ.

N

cor◦ξ

c0

r

π ξΓ

res

Since c is defined via c0, it suffices to show that c0(µ) = h∗(γ). We first compute the norm
of µ

N(µ) = µ · σ.µ = hC(z, 1) · σT (hC(σ(z), 1)) = hC(z, 1) · hC(σS(σ(z), 1))
= hC(z, 1) · hC(1, z)
= hC(z, z).

For the second map, one can check from the definition of ξ (cf. discussion after Definition
3.2.7.) that

ξ : X∗(T )→ Hom(C∗, T (C))
v 7→ v(C).

Let us now compute the corestriction map in our case (or rather its evaluation at j ∈W ) as
stated in Definition 3.2.4. We choose the section Γ→W which sends the non-trivial element
to j.

cor(µ(C))(j) = σ(µ(j−1j)) · µ(j2) = h(1, 1) · h(−1, 1) = h(−1, 1).

Now a comparison with the definition of h∗(γ) shows that c0(µ) defines the same element
inside B(T,R). To be precise, we have an equality

h(1,−1).c0(µ) = h∗(γ)

inside Z1
alg(W,T (C)).

2. Now assume that the derived subgroup of G is simply connected. Write

q : G→ D

for the quotient of D by its derived subgroup. Then κG is defined via this diagram:

B(G,R) π1(G)Γ

B(D,R) π1(D)Γ

κG

κD

This means it suffices to prove that κD(q∗h∗(γ)) = [q ◦ µ], which has been shown in the first
case.
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3. In the general case use a z-extension

1→ Z → G′
p−→ G→ 1

and in this case κG is defined via this diagram.

B(G′,R) π1(G
′)Γ

B(G,R) π1(G)Γ

p

κG′

p

κG

(7.1)

Now we want to choose a lift µ′ of µ. It can be constructed as follows. Choose a maximal
torus im(µ) ⊂ T ⊂ G. Since G′ → G is surjective, by [Hum12, Section 21.3.] we can choose
a maximal torus T ′ ⊂ G′, such that p(T ′) = T . In this case we have a surjection

X∗(T
′)

p∗−→ X∗(T )

and this allows us to choose a lift of µ. Having chosen a lift, let us check that the diagram

0 C∗ W Γ 0

0 G′(C) G′(C)⋊ Γ Γ 0,

(µ′·σ.µ′) α

where α(j) = σ.µ′(−1), is commutative. Using that

im(µ′ · σ.µ′) ⊂ p−1(im(µ · σ.µ))

we have that by [Kot14, Lemma 10.5.] (µ′ · σ.µ′) factors through a central torus. Thus
commutativity of the diagram is equivalent to verifiying that (µ′ ·σ.µ′) is equal to σ.(µ′ ·σ.µ′) =
(σ.µ′ · µ′). But since the cocharacter is central we have

(µ′ · σ.µ′)µ′−1 = µ′−1(µ′ · σ.µ′) = σ.µ′

which implies the desired result. We call the equivalence class of this element b′ ∈ B(G′,R).
We claim that

• p∗(b
′) = b

• κG′(b′) = [µ′].

The first claim follows since by construction

p ◦ µ′ = µ.

As for the second claim, we would like to apply the second case treated before. This is not
exactly possible, since µ′ is not necessarily of the form h′C(z, 1). But we can use a very similar
calculation made in the first step to see that the equality holds assuming that G′ is a torus
and then apply the conclusion as in the second case when the derived subgroup of G′ is simply
connected. Since by construction this is always the case, we conclude that

κG′(b′) = [µ′].

To summarize we have by the commutative diagram (7.1)

κG(h∗(γ)) = κG(p∗(b
′)) = p∗(κG′(b′)) = p∗([µ

′]) = [µ].

This concludes the proof.
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7.2 Flag varieties and modifications

Now we want to construct a map{
(b, [µ]) ∈ B(G,R)bsc × X(GC) | µ minuscule, κG(b) = [µ]

}
−→

{
K ⊂ Hom⊗(RepR(G),RepR(S))

}
using the results from the previous chapters.

Construction 7.2.1. Start with such a couple (b, [µ]). In general to a cocharacter µ we can associate
a parabolic subgroup

Pµ = {g ∈ G | limt→0 ad(µ(t))g exists}.

The flag variety associated to µ is defined as

FlG,µ = G/Pµ.

We want to define a map

FlG,µ(C) = G(C)/Pµ(C)→ {U(1)-equivariant G-bundles}.

Let us first consider the G = GL(VC) case, where V is real vector space of dimension m. In this
case we can pick µ to be of the form

z 7→

z
λ1 0

. . .
0 zλn


with

λ1 > ... > λn.

Furthermore we set ak := dim(VC,k), the dimension of the subspace on which the Gm acts through
the character zλk . The flag variety FlGl(VC),µ(C) parameterizes all flags of the form

0 =W0 ⊂W1 ⊂ ... ⊂Wn = VC , dim(Wk+1/Wk) = ak.

To such a flag we can associate the following lattice∑
k∈Z

t−λkWk[[t]] ⊂ VC ⊗C C((t)).

Such lattices correspond to U(1)-equivariant vector bundles. Thus we get a map

dG,µ : FlG,µ(C)→ {U(1)-equivariant vector bundles}
x 7→ Ex

Note that while different choices of µ can give the same flag variety, dG,µ depends strictly on µ.

We can generalise this description for a general reductive group G. In this case giving an element
in x ∈ FlG,µ(C) is equivalent to giving for each representation (V, r) ∈ RepR(G) a flag

0 ⊂W0 ⊂ ... ⊂Wr = VC
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conjugate to the flag induced by Fil∗(r ◦ µ). In the same spirit we can define

dG,µ : FlG,µ(C)→ {U(1)-equivariant G-bundles}
x 7→ Ex : (V, r) 7→ dGL(V ),r◦µ(V ),

where we regard U(1)-equivariant G-bundles as functors

RepR(G)→ Bun
U(1)
X .

And furthermore we define

Zb,µ := {Ex | x ∈ FlG,µ(C) such that Ex ∼= Eb as G-bundles}

This allows us to define the map{
(b, [µ]) ∈ B(G,R)bsc × X(GC) | µ minuscule, κG(b) = [µ]

}
−→

{
K ⊂ Hom(RepR(G),RepR(S))

}
(b, µ) 7→ Zb,µ

where we used Theorem 6.3.9. to identify semistable bundles with Hom(RepR(G),RepR(S).

Lemma 7.2.2. The following diagram

RepR(S)

Isoc
U(1)
R Bun

U(1)
X

IsocR BunX

H R

EU(1)

Forget Forget
E

commutes up to isomorphism.

Proof. The above triangle was shown to be commutative (up to isomorphism) in Proposition 6.2.10.
The square commutes by construction of EU(1) Lemma 6.2.7.

Lemma 7.2.3. Let h : S→ G be a morphism, b = h∗(γ) ∈ B(G,R), and denote by

i : Xh → FlG,µ(C)

the Borel embedding. For Ei(h) = dG,µ(i(h)) we have an isomorphism

Eb ∼= Ei(h)

as vector bundles.

Proof. For the right hand side note that R was exactly defined to be

R ◦ h∗ = Ei(h).

For the other side note that
RepR(G)

RepR(S) IsocR

h∗ Nb

Forget◦H
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commutes up to isomorphism. Thus by Lemma 7.2.2.

Eb = E ◦Nb
∼= E ◦ Forget ◦ H ◦ h∗. ∼= Forget ◦ R ◦ h∗ = Ei(h).

Corollary 7.2.4. For (b, µ) = (h∗(γ), hC(z, 1)) we have

Xh ⊂ Zb,µ.

Proof. Since for g ∈ G(R)
Ei(h) ∼= Ei(g.h)

we are done.

7.3 The second axiom and the inner form Jb

In this section we want to collect ideas that can not be made more precise to give a rigorous proof.
The first section is related to the SV2 axiom, which hasn’t been involved yet. There is an evident
connection to the inner form Jb which we will introduce and examine.

Before introducing the inner form Jb, we will recall a more classical construction.

Definition 7.3.1. Let G be a reductive group over R. An involution over R

θ : G→ G

is said to be Cartan, if
Gθ(C) = {g ∈ G(C) | g = θ(ḡ)}

is compact.

To each such involution we can associate a real algebraic group H, such that

1. HC ∼= GC

2. H(R) = Gθ(C).

This is achieved by taking θ ◦ σ as descent datum for the complex reductive group GC. We will
denote H by Gθ. Let us recall the second axiom SV2:

• ad(h(i)) is a Cartan involution of Gad.

We will now draw connection between this classical construction and an algebraic group defined in
terms of b ∈ B(G,R). We refer to [Kot14, 2.6.] for more details.

Construction 7.3.2. Let b = (b1, b2) ∈ Z1
alg(W,G(C) and denote by Gb ⊂ GC the centralizer of

b1 : Gm → GC. Choose a lift w ∈ W of σ ∈ Gal(C/R). Then we can regard xw := b2(w) as in
element in GC(C) and

ad(xw) : Gσ(b) → Gb

is an isomorphism independent of the choice of the lifting w. Furthermore these isomorphisms are
a descent datum for Gb. The descent of Gb is denoted by Jb. It is a real algebraic group over R,
such that
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1. Jb(C) = GC(C) = G(C)

2. Jb(R) = {g ∈ G(C) | g = σJb(g) = xwσ(g)x
−1
w }.

We will be only interested in the case that b is basic. In this case Jb is a real form of GC.

Proposition 7.3.3. If b′ = g.b, then Jb ∼= Jb′ .

Proof. One checks that the following diagram

GC GC

GC GC

ad(g)

σJb
σJg.b

ad(g)

commutes. In particular the isomorphism ad(g) descends to an isomorphism Jb ∼= Jg.b over R.

Now assume we have a morphism
h : S→ G.

Recall that we defined b = h∗(γ) and as we have seen that b is basic. Thus we can apply the above
construction to get a real form Jb of GC. We will make this description more concrete. We can
choose w := i · j ∈WC/R as preimage of σ ∈ Γ. In this case

xw = hC(i, i) · hC(1,−1) = hC(i,−i) = h(i)

since

S(R) ∼= C∗ → S(C) ∼= C∗ × C∗

z 7→ (z, z̄).

Thus Jb is the real form of GC with σJb = ad(h(i)) ◦ σ. Thus

Jb ∼= Gθ

and SV2 says that Jad
b (R) is compact.

Let us point one small subtlety here. To be able to conclude as above we need to identify
Gθ/Z(Gθ) ∼= (G/Z(G))θ, which can seen easily by writing out an isomorphism over C which respects
the descent data.

We give one more description of Jb;

Lemma 7.3.4. Consider the fiber functor

Eb : RepR(G)
Nb−−→ IsocR

E−→ BunX .

Then there is an isomorphism
Aut(Eb) ∼= Jb

as sheaves of groups over (Sch/X)ét.
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Proof. We can identify
BunX ∼= Bun(π : P1

C → X).

We claim that the automorphisms of the functor

RepR(G)
ωb−→ BunX

π∗
−→ BunP1

C

are isomorphic to G(P1
C): Since b is basic, RepR(G) is endowed with a Z grading. Thus any

automorphism
α : ωb ⊗ C→ ωb ⊗ C

splits as direct sum ⊕αn. The same holds in fact for any automorphism

α′ : ωG ⊗ C→ ωG ⊗ C.

Since
Hom(OP1

C
(n),OP1

C
(n)) ∼= Hom(OP1

C
,OP1

C
),

we have an isomorphism
Aut(ωb ⊗ C)→ Aut(ωG ⊗ C).

As the latter is isomorphic to G(P1
C) by standard Tannakian formalism, the claim follows. If we set

b2(j) = (A, σ), we see that the descent condition

f∗((ωb ⊗ C)(V, r)) f∗((ωb ⊗ C)(V, r))

(ωb ⊗ C)(V, r) (ωb ⊗ C)(V, r)

f∗(rC(g))

(rC(A)◦σ)⊗c1 (rC(A)◦σ)⊗c1
rC(g)

translates to
rC(gA) = rC(Aḡ)

for all representations and thus it translates to

gA = Aḡ,

which is exactly the condition that g ∈ Jb(X).

Given an étale morphism i : U → X we can rerun the whole argument with

BunU ∼= Bun(πU : UC → U)

to see that an automorphism is given by g ∈ G(UC) which commutes with A, i.e. g ∈ Jb(U).

7.4 Prospects

The aim of this section is to sketch how to use the prior results in this thesis to improve the results.
We begin with the following Conjecture;

Conjecture 2. The map{
Xh | h : S→ G fulfilling SV1+SV2

}
−→

{
(b, [µ]) ∈ B(G,R)bsc × X(GC) | µ minuscule, κG(b) = [µ]

}
is injective.
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It is sufficient to prove that the inclusion in Corollary 7.2.4.

Xh ⊂ Zb,µ

is an equality. By Lemma 7.3.4. we have an isomorphism Aut(Eb) ∼= Jb and thus a bijection

H1
ét(X,G)

∼−→ H1
ét(X, Jb)

P 7→ Isom(Eb,P).

Under this bijection Ex (cf. Construction 7.2.1) is sent to Eb,x.

The idea now is to consider the latter modifications as modifications via

FlJb,µ−1(C).

Since SV2 implies that Jad
b is compact, we can apply the following Lemma. We denote by the

superscript + the connected component in the euclidean topology;

Lemma 7.4.1. Let G be a reductive group over R such that Gad is compact. Then the action

G(R)+ ↷ GC(C)/Pµ(C)

is transitive.

Proof. We can reduce this lemma to proving that

Gad(R)+ ↷ Gad
C (C)/P ad

µ (C)

is transitive, since the latter is isomorphic to GC(C)/Pµ(C) and the former admits a surjection
G(R)+ ↠ Gad(R)+. In this case we can apply a slight modification of [Wol69, Theorem 2.6.(3)],
since Gad(R)+ is a finite index subgroup of Gad(R), to conclude that there is an open orbit
Gad(R)+.x, which is necessarily closed since Gad(R)+ is compact. Thus

Gad(R)+.x = Gad
C (C)/P ad

µ (C).

Now if x1, x2 ∈ FlG,µ(C) such that Ex1
∼= Ex2 , then Ex1,x1

∼= Ex1,x2 as Jb torsors. By the above
Lemma, we should be able to find an element in g ∈ Jb(R), since both are modifications via
FlJb,µ−1(C), such that the isomorphism Ex1,x1

∼= Ex1,x2 is given by g∗. This should imply that we

can find an isomorphism Ex1

g′∗−→ Ex2 given by g′ ∈ G(R) and thus

Zb,µ ⊂ Xh.

Finally let us remark that to get a bijection{
Xh | h : S→ G fulfilling SV1+SV2

}
−−−→

{
(b, [µ]) ∈ B(G,R)bsc × X(GC) | µ minuscule, κG(b) = [µ]

}
+ further conditions

we did define a possible inverse in Section 7.2.{
(b, [µ]) ∈ B(G,R)bsc × X(GC) | µ minuscule, κG(b) = [µ]

}
−→

{
K ⊂ Hom⊗(RepR(G),RepR(S))

}
(b, µ) 7→ Zb,µ.
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From the first part of this section we see, that necessarily we need to include a condition that
corresponds to SV2. One such condition might be

| B(Jb, µ
−1) |= 1

relating modifications of bundles bounded by a character µ to a more intrinsic description inside
B(G,R). It is not clear how to exactly define B(Jb, µ

−1).

Furthermore the functors
Hom⊗(RepR(G),RepR(S))

a priori only yield morphisms
h : S→ H

where H is an inner form of G. Thus κG(b) = [µ] might be necessary to conclude that indeed the
inner form in question is G.
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