Rigid-analytic spaces II Non-archimedean geometry study group

Wojtek Wawrów

22 June 2021

Functoriality of spectrum

In algebraic geometry, many things are dictated by functoriality. We wish for this to hold in rigid geometry too.

Functoriality of spectrum

In algebraic geometry, many things are dictated by functoriality. A= K(T1,...,Tn)/T We wish for this to hold in rigid geometry too.

Proposition

Let $\sigma: A \to B$ be a morphism of affinoid K-algebras. For any maximal $\mathfrak{m} \in \operatorname{Sp} B$ we have $\sigma^*(\mathfrak{m}) := \sigma^{-1}(\mathfrak{m}) \in \operatorname{Sp} A$.

Wojtek Wawrów Rigid-analytic spaces II

Functoriality of spectrum

In algebraic geometry, many things are dictated by functoriality. We wish for this to hold in rigid geometry too.

Proposition

Let $\sigma: A \to B$ be a morphism of affinoid K-algebras. For any maximal $\mathfrak{m} \in \operatorname{Sp} B$ we have $\sigma^*(\mathfrak{m}) := \sigma^{-1}(\mathfrak{m}) \in \operatorname{Sp} A$.

Definition

A morphism of affinoid spaces is any map of the form $\sigma^* : \operatorname{Sp} B \to \operatorname{Sp} A$.

Weierstrass domains

Let $X = \operatorname{Sp} A$.

Wojtek Wawrów Rigid-analytic spaces II

Weierstrass domains

Let $X = \operatorname{Sp} A$. For $f \in A$, we have a Weierstrass domain $X(f) = \{x \in X \mid |f(x)| \le 1\}.$

Weierstrass domains

Let $X = \operatorname{Sp} A$. For $f \in A$, we have a Weierstrass domain $X(f) = \{x \in X \mid |f(x)| \le 1\}.$

Associated algebra of functions: $A\langle f \rangle = A\langle T \rangle/(T-f)$.

Wojtek Wawrów Rigid-analytic spaces II

Weierstrass domains

Let $X = \operatorname{Sp} A$. For $f \in A$, we have a Weierstrass domain $X(f) = \{x \in X \mid |f(x)| \le 1\}.$

Associated algebra of functions: $A\langle f \rangle = A\langle T \rangle/(T-f)$.

Proposition

Let $\sigma: A \to B$. If the image of $\sigma^*: \operatorname{Sp} B \to \operatorname{Sp} A$ is contained in X(f), then σ uniquely extends through $A\langle f \rangle$.

Weierstrass domains

Let $X = \operatorname{Sp} A$. For $f \in A$, we have a Weierstrass domain $X(f) = \{x \in X \mid |f(x)| \le 1\}.$

Associated algebra of functions: $A\langle f \rangle = A\langle T \rangle/(T-f)$.

Proposition

Let $\sigma: A \to B$. If the image of $\sigma^*: \operatorname{Sp} B \to \operatorname{Sp} A$ is contained in X(f), then σ uniquely extends through $A\langle f \rangle$.

More generally, for a tuple $f_1, \ldots, f_n \in A$ we can consider

$$X(f) = X(f_1, ..., f_n) = \{x \in X \mid \forall i : |f_i(x)| \le 1\}.$$

Wojtek Wawrów Rigid-analytic spaces II

Weierstrass domains

Let $X = \operatorname{Sp} A$. For $f \in A$, we have a Weierstrass domain $X(f) = \{x \in X \mid |f(x)| \le 1\}.$

Associated algebra of functions: $A\langle f \rangle = A\langle T \rangle/(T-f)$.

Proposition

Let $\sigma: A \to B$. If the image of $\sigma^*: \operatorname{Sp} B \to \operatorname{Sp} A$ is contained in X(f), then σ uniquely extends through A(f).

More generally, for a tuple $f_1, \ldots, f_n \in A$ we can consider

$$X(f) = X(f_1, \ldots, f_n) = \{x \in X \mid \forall i : |f_i(x)| \le 1\}.$$

Weierstrass domains form a basis of the canonical topology on Sp A. It agrees with the one coming from \overline{K}^m .

Laurent and rational domains

In similar vein we have Laurent domains: for $f_i, g_j \in A$ we have

$$X(f,g^{-1}) = \{x \in X \mid \forall i : |f_i(x)| \le 1, \quad \forall j : |g_j(x)| \ge 1\}.$$

Wojtek Wawrów Rigid-analytic spaces II

Laurent and rational domains

In similar vein we have Laurent domains: for $f_i,g_j\in A$ we have

$$X(f,g^{-1}) = \{x \in X \mid \forall i : |f_i(x)| \leq 1, \quad \forall j : |g_j(x)| \geq 1\}.$$

Its algebra of functions is $A\langle f,g^{-1}\rangle=A\langle T,U\rangle/(T-f,g)$ ().

Laurent and rational domains

In similar vein we have Laurent domains: for $f_i, g_j \in A$ we have

$$X(f,g^{-1}) = \{x \in X \mid \forall i : |f_i(x)| \le 1, \quad \forall j : |g_j(x)| \ge 1\}.$$

Its algebra of functions is $A\langle f, g^{-1} \rangle = A\langle T, U \rangle / (T - f, g) - 1$.

We also have rational domains: for $f_i \in A$ and $g \in A$ which have no common zeros we let

$$X\left(\frac{f}{g}\right) = \{x \in X \mid \forall i : |f_i(x)| \le |g(x)|\}.$$

Rigid-analytic spaces II

Laurent and rational domains

In similar vein we have Laurent domains: for $f_i, g_i \in A$ we have

$$X(f, g^{-1}) = \{x \in X \mid \forall i : |f_i(x)| \le 1, \quad \forall j : |g_i(x)| \ge 1\}.$$

Its algebra of functions is $A\langle f,g^{-1}\rangle=A\langle T,U\rangle/(T-f,g)$ (1).

We also have rational domains: for $f_i \in A$ and $g \in A$ which have no common zeros we let

$$X\left(\frac{f}{g}\right) = \{x \in X \mid \forall i : |f_i(x)| \le |g(x)|\}.$$

 $X\left(\frac{f}{g}\right)=\{x\in X\mid \forall i: |f_i(x)|\leq |g(x)|\}.$ Algorithms which g has the special algebra is $A\langle\frac{f}{g}\rangle=A\langle T\rangle/(gT-f)$. Note that it contains $\frac{1}{g}$. contains $\frac{1}{g}$.

Sp K(T) > ma

1e

a \in \overline{B_1(K)}

Rigid-analytic spaces II

Affinoid domains

Definition

A subset $U \subseteq X = \operatorname{Sp} A$ is called an *affinoid domain* if there is an affinoid algebra A_U and a morphism $A \rightarrow A_U$ such that:

Wojtek Wawrów Rigid-analytic spaces II

Affinoid domains

Definition

A subset $U \subseteq X = \operatorname{Sp} A$ is called an *affinoid domain* if there is an affinoid algebra A_U and a morphism $A \rightarrow A_U$ such that:

- The map $\operatorname{Sp} A_U \to \operatorname{Sp} A$ has image contained in U,
- Any morphism $A \to B$ such that Sp B is mapped into $U \subseteq \operatorname{Sp} A$ factors uniquely through A_U .

Affinoid domains

Definition

A subset $U \subseteq X = \operatorname{Sp} A$ is called an *affinoid domain* if there is an affinoid algebra A_U and a morphism $A \rightarrow A_U$ such that:

- The map $\operatorname{Sp} A_U \to \operatorname{Sp} A$ has image contained in U,
- Any morphism $A \to B$ such that Sp B is mapped into $U \subseteq \operatorname{Sp} A$ factors uniquely through A_U .

Proposition

• Sp $A_U o Sp A$ induces a homeomorphism onto $U. \sim A_U$

Affinoid domains

Definition

A subset $U \subseteq X = \operatorname{Sp} A$ is called an *affinoid domain* if there is an affinoid algebra A_U and a morphism $A \rightarrow A_U$ such that:

- The map $\operatorname{Sp} A_U \to \operatorname{Sp} A$ has image contained in U,
- Any morphism $A \to B$ such that Sp B is mapped into $U \subseteq \operatorname{Sp} A$ factors uniquely through A_U .

Proposition

- Sp $A_U \to \text{Sp } A$ induces a homeomorphism onto U.
- Weierstrass (rational) domain in a Weierstrass (rational) domain is a Weierstrass (rational) domain.

Affinoid domains

Definition

A subset $U \subseteq X = \operatorname{Sp} A$ is called an *affinoid domain* if there is an affinoid algebra A_U and a morphism $A \rightarrow A_U$ such that:

- The map $\operatorname{Sp} A_U \to \operatorname{Sp} A$ has image contained in U,
- Any morphism $A \to B$ such that Sp B is mapped into $U \subseteq \operatorname{Sp} A$ factors uniquely through A_U .

Proposition

- Sp $A_U \rightarrow$ Sp A induces a homeomorphism onto U.
- Weierstrass (rational) domain in a Weierstrass (rational) domain is a Weierstrass (rational) domain.
- Every rational domain is a Weierstrass domain in a Laurent domain.

Further properties

Proposition (Continued)

Affinoid domain in an affinoid domain is an affinoid domain.

Further properties

Proposition (Continued)

- Affinoid domain in an affinoid domain is an affinoid domain.
- Intersection of two affinoid domains is affinoid.

HINDIA GOMAIN.

d. U ~ Au

V ~ Av

UnV ~ Av

K(T) & K(U) = K(T,U)

Further properties

Proposition (Continued)

- Affinoid domain in an affinoid domain is an affinoid domain.
- Intersection of two affinoid domains is affinoid.

AuBAV

Disjoint union of two affinoid domains is affinoid.

Further properties

Proposition (Continued)

- Affinoid domain in an affinoid domain is an affinoid domain.
- Intersection of two affinoid domains is affinoid.
- Disjoint union of two affinoid domains is affinoid.
- Every affinoid domain is open. in can, tapology

Wojtek Wawrów Rigid-analytic spaces II

Further properties

Proposition (Continued)

- Affinoid domain in an affinoid domain is an affinoid domain.
- Intersection of two affinoid domains is affinoid.
- Disjoint union of two affinoid domains is affinoid.
- Every affinoid domain is open.
- (Gerritzen-Grauert) Every affinoid domain is a finite union of rational domains.

Structure sheaf, first attempt

We would like to have a structure sheaf O_X on $X = \operatorname{Sp} A$ such that $O_X(U) = A_U$ for $U \subseteq X$ affinoid.

Structure sheaf, first attempt

We would like to have a structure sheaf O_X on $X = \operatorname{Sp} A$ such that $O_X(U) = A_U$ for $U \subseteq X$ affinoid. However, this doesn't work.

 $O_X(U) = A_U$ for $U \subseteq X$ affinoid. However, this questite work. A = K(T), $S_{10}A = unit disk$ $A \in K(T, T^{-1})$ $S_{10}K(T, T^{-1})$ $O \in K(C^{-1}T)$ $S_{10}K(C^{-1}T)$, $C \in K$ $C \in K(C^{-1}T)$ $C \in K$ $C \in K(C^{-1}T)$ $C \in K$ $C \in K(C^{-1}T)$ $C \in K$

We would like to have a structure sheaf O_X on $X = \operatorname{Sp} A$ such that $O_X(U) = A_U$ for $U \subseteq X$ affinoid. However, this doesn't work. It seems like this space has too many open sets.

coverings

Wojtek Wawrów Rigid-analytic spaces II

G-topologies

Definition

A G-topology on a set X consists of the following data:

a collection of admissible open subsets,

G-topologies

Definition

A G-topology on a set X consists of the following data:

- a collection of admissible open subsets,
- for each admissible U, a collection of admissible coverings of U by other admissibles,

G-topologies

Definition

A G-topology on a set X consists of the following data:

- a collection of admissible open subsets,
- for each admissible U, a collection of admissible coverings of U by other admissibles,

subject to the following conditions:

- Intersection of two admissible opens is admissible open,
- $\{U\}$ is a cover of U,

- If $\{U_i\}_i$ is a cover of U and $U'\subseteq U$, then $\{U_i\cap U'\}$ is a cover of U',
- If $\{U_i\}_i$ is a cover of U and $\{V_{ij}\}_j$ is a cover of U_i , then $\{V_{ij}\}_{i,j}$ is a cover of U.

Weak G-topology

On any affinoid space Sp A we have a weak G-topology: admissible opens are the affinoid domains, and admissible covers are the finite covers.

Wojtek Wawrów Rigid-analytic spaces II

Weak G-topology

On any affinoid space Sp A we have a weak G-topology: admissible opens are the affinoid domains, and admissible covers are the finite covers.

Theorem (Tate Acyclicity)

The assignment $O_X(U) = A_U$ defines a sheaf in the weak G-topology.

Weak G-topology

On any affinoid space Sp A we have a weak G-topology: admissible opens are the affinoid domains, and admissible covers are the finite covers.

Theorem (Tate Acyclicity)

The assignment $O_X(U) = A_U$ defines a sheaf in the weak *G*-topology. More precisely, for $U = U_1 \cup \cdots \cup U_n$, the Cech complex

$$0 \to A_U \to \prod A_{U_i} \to \prod A_{U_i \cap U_j} \to \prod A_{U_i \cap U_j \cap U_k} \to \cdots$$

is exact.

Rigid-analytic spaces II

Weak G-topology

On any affinoid space Sp A we have a weak G-topology: admissible opens are the affinoid domains, and admissible covers are the finite covers.

Theorem (Tate Acyclicity)

The assignment $O_X(U) = A_U$ defines a sheaf in the weak *G*-topology. More precisely, for $U = U_1 \cup \cdots \cup U_n$, the Cech complex

$$0 \to A_U \to \prod A_{U_i} \to \prod A_{U_i \cap U_j} \to \prod A_{U_i \cap U_j \cap U_k} \to \cdots$$

is exact.

Therefore the structure sheaf is an acyclic sheaf.

Proof of Tate acyclicity

The proof is a series of reductions:

Wojtek Wawrów Rigid-analytic spaces II

Proof of Tate acyclicity

The proof is a series of reductions:

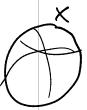
Any admissible covering can be refined by a "standard"

rational covering
$$\rightarrow$$
 only need to consider such rational ones.
 $\{0, \dots, 1, i \in A, X = \bigcup_{i} X \left(\frac{1}{i}, \dots, \frac{1}{i}\right)$
 $\{1, \dots, 1, i \in A, X = \bigcup_{i} X \left(\frac{1}{i}, \dots, \frac{1}{i}\right) \}$

Proof of Tate acyclicity

The proof is a series of reductions:

- Any admissible covering can be refined by a "standard" rational covering \rightarrow only need to consider such rational ones.
- Pass to elements of a Laurent covering → may assume the rational coverings are generated by units.



Wojtek Wawrów Rigid-analytic spaces II

Proof of Tate acyclicity

The proof is a series of reductions:

- Any admissible covering can be refined by a "standard" rational covering \rightarrow only need to consider such rational ones.
- ullet Pass to elements of a Laurent covering o may assume the rational coverings are generated by units.
- Rational covering generated by units can be refined by a Laurent covering \rightarrow can reduce to "standard" Laurent fam., fn, X(41, f2, ..., fn) coverings.

Proof of Tate acyclicity

The proof is a series of reductions:

- Any admissible covering can be refined by a "standard" rational covering \rightarrow only need to consider such rational ones.
- Pass to elements of a Laurent covering → may assume the rational coverings are generated by units.
- Rational covering generated by units can be refined by a Laurent covering → can reduce to "standard" Laurent coverings.
- Inductive reasoning → enough to show the result for $X = X(f) \cup X(f^{-1}). \quad 0 \to A \longrightarrow A(1,1) \to A(1,1) \to 0$ (x, y) >> x-n

Wojtek Wawrów Rigid-analytic spaces II

Proof of Tate acyclicity

The proof is a series of reductions:

- Any admissible covering can be refined by a "standard" rational covering \rightarrow only need to consider such rational ones.
- Pass to elements of a Laurent covering → may assume the rational coverings are generated by units.
- Rational covering generated by units can be refined by a Laurent covering → can reduce to "standard" Laurent coverings.
- ullet Inductive reasoning o enough to show the result for $X = X(f) \cup X(f^{-1}).$
- This last case is done by direct calculation.

Weak G-topology has some properties which make it behave poorly when we try to glue things.

Wojtek Wawrów Rigid-analytic spaces II

Weak topology is too weak

Weak G-topology has some properties which make it behave poorly when we try to glue things. Axioms of G-topology are also somewhat too weak for gluing.

Weak G-topology has some properties which make it behave poorly when we try to glue things. Axioms of G-topology are also somewhat too weak for gluing.

We consider the following "completeness" properties:

 $(G_0) \varnothing, X$ are admissible,

Wojtek Wawrów Rigid-analytic spaces II

Weak topology is too weak

Weak *G*-topology has some properties which make it behave poorly when we try to glue things. Axioms of G-topology are also somewhat too weak for gluing.

We consider the following "completeness" properties:

- $(G_0) \varnothing, X$ are admissible,
- (G₁) If $\{U_i\}$ is an admissible covering of U, and $V \subseteq U$ is any subset such that $V \cap U_i$ is admissible, then V is admissible.

"odniscility is G-local"

Weak G-topology has some properties which make it behave poorly when we try to glue things. Axioms of G-topology are also somewhat too weak for gluing.

We consider the following "completeness" properties:

- $(G_0) \varnothing, X$ are admissible,
- (G_1) If $\{U_i\}$ is an admissible covering of U, and $V \subseteq U$ is any subset such that $V \cap U_i$ is admissible, then V is admissible.
- (G₂) If $\{U_i\}$ is any cover of U which is refined by an admissible cover, then $\{U_i\}$ is admissible.

Wojtek Wawrów Rigid-analytic spaces II

Weak topology is too weak

Weak G-topology has some properties which make it behave poorly when we try to glue things. Axioms of G-topology are also somewhat too weak for gluing.

We consider the following "completeness" properties:

- $(G_0) \varnothing, X$ are admissible,
- (G_1) If $\{U_i\}$ is an admissible covering of U, and $V \subseteq U$ is any subset such that $V \cap U_i$ is admissible, then V is admissible.
- (G_2) If $\{U_i\}$ is any cover of U which is refined by an admissible cover, then $\{U_i\}$ is admissible.

Theorem

For any G-topology T on a set X there is a canonical refinement T' which satisfies (G_1) and (G_2) .

Weak G-topology has some properties which make it behave poorly when we try to glue things. Axioms of G-topology are also somewhat too weak for gluing.

We consider the following "completeness" properties:

- $(G_0) \varnothing, X$ are admissible,
- (G₁) If $\{U_i\}$ is an admissible covering of U, and $V \subseteq U$ is any subset such that $V \cap U_i$ is admissible, then V is admissible.
- (G_2) If $\{U_i\}$ is any cover of U which is refined by an admissible cover, then $\{U_i\}$ is admissible.

Theorem

For any G-topology T on a set X there is a canonical refinement T' which satisfies (G_1) and (G_2) .

Furthermore, T' is slightly finer by T, which makes sheaves on T extend uniquely to T', as do morphisms of sheaves.

Shr(X,T) = Shr(X,T1) 1 as topooi/toposes"

Wojtek Wavrów Rigid-analytic spaces 11

Strong G-topology

Applied to (the class of all) affinoid spaces we get the following G-topology on $X = \operatorname{Sp} A$, called the *strong* G-topology:

Wojtek Wawrów

Rigid-analytic spaces II

Strong G-topology

Applied to (the class of all) affinoid spaces we get the following G-topology on $X = \operatorname{Sp} A$, called the $\operatorname{strong} G$ -topology:

• $U \subseteq X$ is admissible if there is a (possibly infinite) cover $\{U_i\}$ by affinoid domains such that for all $\varphi: Z \to X$ with $\varphi(Z) \subseteq U$, the cover $\{\varphi^{-1}(U_i)\}$ of Z has a finite refinement by affinoid domains.

Ainste "as for us offinsid sporces can see"

Wojtek Wawrów

Rigid-analytic spaces II

Strong G-topology

Applied to (the class of all) affinoid spaces we get the following G-topology on $X = \operatorname{Sp} A$, called the *strong* G-topology:

- $U \subseteq X$ is admissible if there is a (possibly infinite) cover $\{U_i\}$ by affinoid domains such that for all $\varphi: Z \to X$ with $\varphi(Z) \subseteq U$, the cover $\{\varphi^{-1}(U_i)\}$ of Z has a finite refinement by affinoid domains.
- A cover $\{U_i\}$ of admissible U is admissible if for all $\varphi: Z \to X$ with $\varphi(Z) \subseteq U$, the cover $\{\varphi^{-1}(U_i)\}$ of Z has a finite refinement by affinoid domains.

Open mix disk: $B_1 = \bigcup B_r \subseteq B_1$ $r \in (\mathbb{R}^n)$ $\varphi: Z \longrightarrow \overline{B_1}, \quad \varphi(z) \subseteq \overline{B_1}$ $\varphi: Z \longrightarrow \overline{B_1}, \quad \varphi(z) \subseteq \overline{B_1}$

Strong G-topology

Applied to (the class of all) affinoid spaces we get the following G-topology on $X = \operatorname{Sp} A$, called the *strong G-topology*:

- $U \subseteq X$ is admissible if there is a (possibly infinite) cover $\{U_i\}$ by affinoid domains such that for all $\varphi: Z \to X$ with $\varphi(Z) \subseteq U$, the cover $\{\varphi^{-1}(U_i)\}\$ of Z has a finite refinement by affinoid domains.
- A cover $\{U_i\}$ of admissible U is admissible if for all $\varphi: Z \to X$ with $\varphi(Z) \subseteq U$, the cover $\{\varphi^{-1}(U_i)\}$ of Z has a finite refinement by affinoid domains.

Proposition

• The strong G-topology satisfies (G_0) , (G_1) and (G_2) .

Wojtek Wawrów Rigid-analytic spaces II

Strong G-topology

Applied to (the class of all) affinoid spaces we get the following G-topology on $X = \operatorname{Sp} A$, called the *strong G-topology*:

- $U \subseteq X$ is admissible if there is a (possibly infinite) cover $\{U_i\}$ by affinoid domains such that for all $\varphi: Z \to X$ with $\varphi(Z) \subseteq U$, the cover $\{\varphi^{-1}(U_i)\}\$ of Z has a finite refinement by affinoid domains.
- A cover $\{U_i\}$ of admissible U is admissible if for all $\varphi: Z \to X$ with $\varphi(Z) \subseteq U$, the cover $\{\varphi^{-1}(U_i)\}$ of Z has a finite refinement by affinoid domains.

Proposition

- The strong G-topology satisfies (G₀), (G₁) and (G₂).
- All finite unions of affinoid domains are admissible open, and such unions are admissible covers.

Strong G-topology

Applied to (the class of all) affinoid spaces we get the following G-topology on $X = \operatorname{Sp} A$, called the *strong G-topology*:

- $U \subseteq X$ is admissible if there is a (possibly infinite) cover $\{U_i\}$ by affinoid domains such that for all $\varphi: Z \to X$ with $\varphi(Z) \subseteq U$, the cover $\{\varphi^{-1}(U_i)\}\$ of Z has a finite refinement by affinoid domains.
- A cover $\{U_i\}$ of admissible U is admissible if for all $\varphi: Z \to X$ with $\varphi(Z) \subseteq U$, the cover $\{\varphi^{-1}(U_i)\}$ of Z has a U=4+09 N=U4121>r3 finite refinement by affinoid domains.

Proposition

- The strong G-topology satisfies (G_0) , (G_1) and (G_2) .
- All finite unions of affinoid domains are admissible open, and such unions are admissible covers.
- All Zariski open subsets are admissible open, and their arbitrary unions are admissible covers.

Wojtek Wawrów Rigid-analytic spaces II

Rigid-analytic spaces

Rigid-analytic spaces

Definition

A (locally) G-ringed space is a set X equipped with a G-topology and a sheaf of rings O_X (such that all stalks are local rings.)

e.g. Sp A with either weak or strong G-top.

Wojtek Wawrów Rigid-analytic spaces II

Rigid-analytic spaces

Definition

A (locally) G-ringed space is a set X equipped with a G-topology and a sheaf of rings O_X (such that all stalks are local rings.)

Definition

A rigid-analytic space over K is a locally G-ringed space (X, O_X) such that

ullet there is an admissible covering $\{X_i\}$ such that each $(X_i, O_X|_{X_i})$ is isomorphic to an affinoid space, of strong 6-top.

Rigid-analytic spaces

Definition

A (locally) G-ringed space is a set X equipped with a G-topology and a sheaf of rings O_X (such that all stalks are local rings.)

Definition

A *rigid-analytic space* over K is a locally G-ringed space (X, \mathcal{O}_X) such that

- there is an admissible covering $\{X_i\}$ such that each $(X_i, O_X|_{X_i})$ is isomorphic to an affinoid space,
- X satisfies $(G_0), (G_1), (G_2)$.

Wojtek Wawrów

Rigid-analytic spaces I

Rigid-analytic spaces

Definition

A (locally) G-ringed space is a set X equipped with a G-topology and a sheaf of rings O_X (such that all stalks are local rings.)

Definition

A *rigid-analytic space* over K is a locally G-ringed space (X, \mathcal{O}_X) such that

- there is an admissible covering $\{X_i\}$ such that each $(X_i, O_X|_{X_i})$ is isomorphic to an affinoid space,
- X satisfies $(G_0), (G_1), (G_2)$.

Proposition (Gluing rigid spaces)

Suppose we are given rigid spaces X_i , admissible opens X_{ij} and isomorphisms $\varphi_{ij}: X_{ij} \to X_{ji}$ satisfying suitable cocycle conditions. Then they can be uniquely glued to one space X of which $\{X_i\}$ is an admissible covering.

Wojtek Wawrów

Rigid-analytic spaces II

Example: affine space

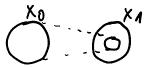
Pick $q \in K$, 0 < |q| < 1. Consider the map $\varphi : K\langle T \rangle \to K\langle T \rangle$, $T \mapsto qT$.

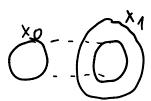
Wojtek Wawrów

Rigid-analytic spaces I

Example: affine space

Pick $q \in K$, 0 < |q| < 1. Consider the map $\varphi : K\langle T \rangle \to K\langle T \rangle$, $T \mapsto qT$. The map $\varphi^* : X_0 \to X_1$, where $X_0 = X_1 = \operatorname{Sp} K\langle T \rangle$, identifies the unit disk X_0 with the disk of radius |q| inside X_1 .





Wojtek Wawrów

Rigid-analytic spaces I

Example: affine space

Pick $q \in K, 0 < |q| < 1$. Consider the map $\varphi : K\langle T \rangle \to K\langle T \rangle$, $T \mapsto qT$. The map $\varphi^* : X_0 \to X_1$, where $X_0 = X_1 = \operatorname{Sp} K\langle T \rangle$, identifies the unit disk X_0 with the disk of radius |q| inside X_1 . "Rescaling" X_1 , we can think of this as inclusion of unit disk inside a disk of radius $|q|^{-1}$.

Wojtek Wawrów

Rigid-analytic spaces I

Example: affine space

Pick $q \in K, 0 < |q| < 1$. Consider the map $\varphi : K\langle T \rangle \to K\langle T \rangle$, $T \mapsto qT$. The map $\varphi^* : X_0 \to X_1$, where $X_0 = X_1 = \operatorname{Sp} K\langle T \rangle$, identifies the unit disk X_0 with the disk of radius |q| inside X_1 . "Rescaling" X_1 , we can think of this as inclusion of unit disk inside a disk of radius $|q|^{-1}$.

We can consider the sequence

$$X_0 \xrightarrow{\varphi^*} X_1 \xrightarrow{\varphi^*} X_2 \xrightarrow{\varphi^*} \dots$$

Example: affine space

Pick $q \in K$, 0 < |q| < 1. Consider the map $\varphi : K\langle T \rangle \to K\langle T \rangle$, $T\mapsto qT$. The map $\varphi^*:X_0\to X_1$, where $X_0=X_1=\operatorname{Sp} K\langle T\rangle$, identifies the unit disk X_0 with the disk of radius |q| inside X_1 . "Rescaling" X_1 , we can think of this as inclusion of unit disk inside a disk of radius $|q|^{-1}$.

We can consider the sequence

$$X_0 \xrightarrow{\varphi^*} X_1 \xrightarrow{\varphi^*} X_2 \xrightarrow{\varphi^*} \dots$$

Gluing these together we get the *rigid-analytic affine line* $\mathbb{A}^{1,rig}$.

Wojtek Wawrów Rigid-analytic spaces II

Example: affine space

Pick $q \in K$, 0 < |q| < 1. Consider the map $\varphi : K\langle T \rangle \to K\langle T \rangle$, $T \mapsto qT$. The map $\varphi^* : X_0 \to X_1$, where $X_0 = X_1 = \operatorname{Sp} K\langle T \rangle$, identifies the unit disk X_0 with the disk of radius |q| inside X_1 . "Rescaling" X_1 , we can think of this as inclusion of unit disk inside a disk of radius $|q|^{-1}$.

We can consider the sequence

$$X_0 \xrightarrow{\varphi^*} X_1 \xrightarrow{\varphi^*} X_2 \xrightarrow{\varphi^*} \dots$$

Gluing these together we get the *rigid-analytic affine line* $\mathbb{A}^{1,rig}$. Its underlying set of points is the same as $\operatorname{Spec} K[T]$, but the ring of functions is larger: it contains all globally convergent power series.

Coherent sheaves (if time permits)

Proposition

Let M be an A-module. Then $\widetilde{M}: U \mapsto A_U \otimes_A M$ defines an acyclic sheaf of O_X -modules on Sp A.

Wojtek Wawrów Rigid-analytic spaces II

Coherent sheaves (if time permits)

Proposition

Let M be an A-module. Then $\widetilde{M}: U \mapsto A_U \otimes_A M$ defines an acyclic sheaf of O_X -modules on Sp A.

Proposition/Definition

For a rigid space X and a sheaf F of O_X -modules, the following conditions are equivalent:

- There is an admissible cover by affinoid subspaces U_i such that $F|_{U_i} \cong M_i$ for some $O_X(U_i)$ -module M_i ,
- Above holds for all admissible covers by affinoid subspaces,
- F is locally of finite presentation on X.

If this condition is satisfied, *F* is called *coherent*.

O, -, 0, -, F-, 0

Coherent sheaves (if time permits)

Proposition

Let M be an A-module. Then $\widetilde{M}: U \mapsto A_U \otimes_A M$ defines an acyclic sheaf of O_X -modules on Sp A.

Proposition/Definition

For a rigid space X and a sheaf F of \mathcal{O}_X -modules, the following conditions are equivalent:

- ullet There is an admissible cover by affinoid subspaces U_i such that $F|_{U_i} \cong M_i$ for some $O_X(U_i)$ -module M_i ,
- Above holds for all admissible covers by affinoid subspaces,
- F is locally of finite presentation on X.

If this condition is satisfied, F is called *coherent*.

Corollary (Kiehl's Theorem)

Every coherent O_X -module on $\operatorname{Sp} A$ is of the form \widetilde{M} .