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Let X be an algebraic variety over k, an algebraically closed, complete, non-archimedean field
with non-trivial absolute value. We can try to assign X (k) the weakest topology such that for
every Zariski open U < X and every regular function f € Ox(U), the function

U(k) > R : P — | f(P)| is continuous.

Tate: use a Grothendieck topology. But this implies the existence of non-zero abelian sheaves
with all stalks zero: we need more points.

Berkovich: points with values in fields with rank 1 valuations. Spaces become Hausdorff and
locally compact.

Huber considered arbitrary valuations, giving adic spaces. These are not Hausdorff in general.
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All rings are commutative with identity.

A seminorm on aring </ is a function | | : &/ — R3 such that|0] = 0,|1] = 1,

If + gl < |fl +|gland |fg] < |f]-[g|forallf, g€ .

If | fg| = |f] -|g|, we say that | | is multiplicative.

Each seminorm | | determines a topology, which is Hausdorff if and only if | | is a norm, i.e.
|f] = 0 = f = 0. One can construct a completion of ./ with respect to any seminorm.

We say that two seminorms | | and | |" are equivalent if there exist C, C' > 0 such that

Clf] < |fI" < C"|f| forall f € o7. Equivalent seminorms define the same topology. If a is an
ideal of .7 we can define the residue seminorm on <7 /aby |f| = inf{|g| | g projects to f}.

The residue seminorm is a norm if and only if a is closed in .o/

If o/ is a normed ring and f € ¢ is invertible, then for all m, n > 0 we have||f"|| =" < ||f="||".

If 3, a; < oo and the g; are all positive real numbers, then }; a? < coforalln = 1.

Let ¢ : &/ — 2 be a homomorphism of seminormed rings. We say that ¢ is bounded if there is
a constant C > 0 such that |¢(f)| < C|f| forallf € /.
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A Banach ring is a normed ring that is complete with respect to its norm.

Examples. (i) The trivial norm | |, with | f|, = 1 for all f # 0 makes any ring into a Banach
ring.

(i) If o7 is Banach and a is a closed ideal, then </ /a is complete with respect to the residue
norm. The set of invertible element in .27 is open and an element x € <7 is not invertible if and
only if it lies in some maximal ideal of «7. It follows that every maximal ideal is closed.

(iii) Z is a Banach ring with respect to the usual absolute value | |, .

(iv) For a Banach ring . and a positive number , let «7{{r~1T)) denote the set of power
series f = 2,7 a;T" such that 3,2 [|a;|| ¥* < 0. Then «/{(r~'T)) is Banach with respect to
the norm || f|| = 3,2, ||ai|| . Note that an element 1 — aT, with a € <7, is invertible in
1Ty if and only if Y172 ||a']| ¥ < 0.

Let o be a Banach ring. The spectrum .4 (A) is the set of all bounded multiplicative
seminorms on &7 equipped with the weakest topology such that the evaluation functions
| | = |f], for f € o, are continuous. Our first goal is the following theorem.

The spectrum . (<7 ) is a nonempty compact Hausdorff space.
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Let ¢ : &/ — % be a bounded homomorphism of Banach rings. It induces a continuous map
¢* M (B) — M (). Assume that the set of elements of the form ¢(f)/¢(g) for f, g € o
and ¢(g) invertible in 2 is dense in 4. Then by continuity, every seminorm of 48 is determined
by its values on this set, i.e. ¢* is injective.

We are ready to prove that .# (<) is nonempty.

By the previous observation it is enough to show that .# (.7 /m) is nonempty, where m is a
maximal ideal. So assume that <7 is a field. Let S be the set of nonzero bounded seminorms on
&7/. S is nonempty because it contains the norm of .<7. We put a partial orderon S: | | < | | if
|fI < |f| forallf € o. Let| |be a minimal element in S. We can replace .7 by its completion
with respect to | | and thus assume that | | is the norm of 2. Now we need to show that | | is
multiplicative.

First we prove that | /| = | f|" for all f € 7. If not, there exists an f such that | /| < | f|" for
some n. We claim that f — T is not invertible in the Banach ring </ {{r~'T)) where

r= |f"|1/”A The inverse of f — T in «/[[T]] isf~'(1 — f~'T) L. Therefore it is enough to
show that Z;’:O | fi | 7 does not converge. Applying Lemma 1, we have

¢ 0
© = 1= —in zn_Z fnlfirinéZ’f—i
i i=0 i=0

By Lemma 2, this implies that f — T is not invertible in </ {{r~1T).

8
S

n in
1
r.
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Consider the homomorphism ¢ : &/ — @/{{r~'T)»)/(f — T). Since & is a field, this is
injective, and ||¢(f)|| =TIl = r = |71/ < | £]. Pulling back the residue norm on
' TYY/(f — T) to o/ we get a seminorm | | satisfying | f|” < | f]. This is impossible as
| | is a minimal seminorm.

Similarly we can prove that for nonzero f € <7 we have ‘ F! ‘ =|f \71. Together with
submultiplicativity this gives

el = = | < e = 1 e <
Thus | | is multiplicative and .# (.¢/) is nonempty.
Let x’ and x” be distinct points of .# (o). Without loss of generality, there exists f € &7 with
|fly < |f|u- Pick a real number r with | f|,, < r < |f].. Then

U ={xe ()| |fly <rtandU" ={xe #()]| |f|, > r} are disjoint
neighbourhoods of x” and x” respectively. Hence .# (<) is Hausdorff.
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Let | |, be an element of .# (7). The kernel p, is a closed prime ideal of .27. The value | f]|
depends only on the residue class of f in o7 /p,. The resulting valuation on .7 /p, extends to a
valuation on its fraction field K(x). The completion of K(x) with respect to | |, is a complete
valued field denoted by ¢ (x). The image of f € &/ in 5 (x) is denoted by f(x). The
homomorphism

od— ] #W®

xe M ()

which sends f to f = (£(x))e  (e2) 18 called the Gel’fand transform.
Set # = [l e.s (or) 7 (%) The induced map .# (%) — .# (/) is surjective. Compactness
of ./ (o) follows from the following result.

Let {K;}ies be a family of valuation fields. Then the spectrum .# (%) of Z = [ |
homeomorphic to the Stone-Cech compactification of the discrete set I.

ier Ki1s

This is proved using filters.
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There is a natural continuous map . (/) — Spec(/) : x > py, sending a seminorm to its
kernel.

Let’s look at .# (Z) more closely. By Ostrowski’s theorem, any multiplicative seminorm on Z
is one of the following:

(1) A seminorm | | where ¢ € (0, 1]:

o0,e?

2l e =Inl%,

(2) The trivial seminorm | |,

(3) A p-adic seminorm | |, _, where p is a prime and |n|, . = e for e € (0, 0)

p.e’
(4) A p-trivial seminorm | | 0 Where p is a prime and

0, ifp|n.
1

Inl, o =
P , otherwise.
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2 =R,

A =(Q,|.]o)
H = (Qp, |[5)
H = (Fp, |.o)

The natural map .# (<) — Spec(Z) sends the lower endpoints of the prime number intervals
to their respective prime ideals and all other points to the generic point of Spec(Z).

Fix n € Z. The preimage of {a <|n|, < b} < Ry is open in .#(Z). The open
neighbourhoods of | | in .# (Z) are those subsets which contain all branches except finitely
many, and contain a Euclidean neighbourhood of | | in the remaining ones.
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Let k be a complete, algebraically closed, non-archimedean field.

The Berkovich affine line A,](’an is the set of multiplicative seminorms on the polynomial ring
k[T] which restrict to the valuation on k. This set is given the weakest topology such that all
real-valued functions of the form | | — |f|, for f € k[T], are continuous.

Let k(r='T) = {f = 32, | sup |a;| ¥ < oo} be the Tate algebra, which is a Banach ring
with respect to the norm|| f|| = sup |a;| . Set X = .# (k{r'T)). For a € k and p € R with
la] < rand 0 < p < r, define D(a, p) = {x € X ||x — a|] < p}. We have D(0,r) = X.

l,an
Furthermore A,**" 2~ |,
Proof. We define continuous maps in each direction. The inclusion k[T] — k{r~!T induce

D(0,r), so Ai’a" is locally compact.

maps ¢r : D(0,r) — A}{’an. These maps are compatible, so they induce

¢ limD(0,r) = U D(0,r) — A"

r>0
Suppose x € A,i’an, let r = |T|,. Define 1 (x) € D(0, r) by

n

— T i

[y = Jim ZOT
£

X

for f € k{r—'T). The resulting map 1 : A}(’a“ — lim D(0, r) is inverse to ¢.
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Our next goal is to characterise the points of A,](’an.

Each element a of k gives rise to a point of A}(’a" via the seminorm
| 1 +f € KT] = [f(@)] € Rso.

Conversely a can be recovered from | |, since ker(| |,) = (T — a). This gives an injection

k — A,lc’an. We can identify a point a of k with a generalised disk D(a, 0) of radius 0. We call
these type 1 points.

Any closed disk D(a, r) with r > 0 defines a multiplicative seminorm given by

| |p i k[T] > Rxg : f > sup,ep |f(x)| If r lies in the value group |k>< |, this is a type 2 point.
If r ¢|k|, it is a type 3 point.

In general, there is one more type of point: let Dy © D, > D3 O ... be a sequence of nested
closed disks of k. If |J D; = @, then limy— o0 | f|,, defines a new point of A}(’an.

Such points, called type 4 points, only occur when k is not spherically complete.

We say that k is spherically complete if every nested sequence of closed disk has nonempty
intersection.
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C, = @, is not spherically complete.

Proof. Let r,, be a sequence of real numbers converging to r > 0 from above. Set

Dy = D(0, rg). We can find disjoint disks D and D/ both of radius r; contained in Dy.
Continuing in this fashion, we get 280 nested sequences of closed disks. Let 2~ be one such
sequence and set Dy = [ 2, D-

Assume D~ is nonempty, let x € D. Since x lies in D for all D € Z,,, it is the centre of each
disk. So D~ contains D(x, r). Now if |x — y| = r/ > r, then there is some D € 2., with radius
less than #’. So y ¢ D and thus y ¢ D.,. Thus D is either empty of a disk of radius r. In
particular, each D, is open.

But C,, is separable (Q is dense in it), so each nonempty D~ must contain a point of Q. But the
D~ are disjoint, so all but countably many of them must be empty.

Remark. Every local field is sperically complete. Every valued field has a spherical completion.
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Every point of A}(’a“ can be realised as lim,— | | p, for some nested sequence
D; o D, o ... of closed disks in k.

Proof. Seminorms are multiplicative and k is algebraically closed, so we only need to consider
seminorms of linear polynomials in k[7]. Fix a point x € A,i’an. Consider the family F of

closed disks
F ={D(a,|T —a|,)|ac k}.

Let a, b € k. Without loss of generality,|T — a|, > |T — b|,. We have

la — b| =|a — b|, < max{|T — al,,|T — b|,} with equality if |T — a|, <|T — b|,. Thus

b e D(a,|T — al,) and so D(b,|T — b|,) < D(a,|T — al,). We see that F is totally ordered.
Let r = inf e |T — a|x. Choose a sequence of points a, in k such that r,, decreases to r, where

rn =|T — an|,. Set Dy = D(ay, ry). This is a nested sequence of closed disks.
Now one can show that for all a € k, |T — a|, = limy— o |T — “an'




Summing up: let | |, € A,]("m, let D,, = D(an, ra) be the corresponding nested sequence of
closed disks, and let = lim r,.

Type 1: r = 0 and () D» = a, where completeness of k ensures that the limit is nonempty.
Type 2: (\Dy = D(a, r) with r € |k |
Type 3: (D, = D(a,r) with r ¢|k|.

Type 4: (D, = @.
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Type I points Coo

Figure: The Berkovich unit disk D(0, 1).

A,lc’an is uniquely path-connected.
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Local description of the points of A,l(’an:

For x € Ay®", define Tx = {connected components of A,"*" — {x}}.

If x is Type 1, then #7, = 1.

If x is Type 2, then #T is infinite: there are infinitely many branches joining at x.

If x is Type 3, there is no branching: #7y = 2.

If x is Type 4, #7T, = 1: x is a dead end.
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Letx € A" Recall that K (x) is defined as the fraction field of k[T]/ker(| |,) and 5#(x) is
the completion of K (x) with respect to | | .. We can describe the points of Ai’an in terms of the

value group and the residue field ﬁp”(\x/) of 7 (x), where 7 (x) = Oy/m, with
Or ={f e KM | If], < I}andm, = {f € K(x) | |f], < 1}.

’ Type ‘ Value group|jf(x)x} ‘ Residue ﬁeld;i;(;) ‘

1 k> k
2 k* k(1)
3 k], k
4 [&] k
=k

Here, r € R\!kx | Moreover, x is of type 1 if and only if J# (x)
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Proof. Type 1: xis given by | f|, = | f(a)|. ker| |, = (T — a), so K(x) = H#(x) = k.

Type 2: x corresponds to a disk D(a, r) with r € |k X | No polynomial vanishes identically on
D(a,r), s0 K(x) = k(T). For any f € k[T] there exists a p € D(a, r) such that | f|, = | f(p)| by
the non-archimedean maximum principle. Therefore|K (x)* | = |7(x)*| i]f, *|. Take

¢ € k* with|c| = r. Let  be the reduction of (T — a)/c in the residue field H(x). One can show
that  is transcendental over k and I-rlzx/) = Ir(?x/) = k(1)

Type 3: Suppose x corresponds to D(a, r) with r ¢ |kX | We have|T — a|, = r, and so

|7 (x)* | = <]k, ). To prove that the residue field is k, write f € k(T) as a quotient of
polynomials f = g/h,

8(T) = Y. bi(T — a)', W(T) = ¥, ¢(T — a).

Notice that since r ¢ ‘kx |, the strict ultrametric inequality applies to the terms of g and A: there
are indices ip and jo such that|g|, = }bi0| o |h|, = ‘cj-o{ 7o If | f], = 1, we must have iy = jio
and

f = biy/ci, mod m,.
So every f € Oy has constant reduction, i.e. )F?”\()_c/) =k
Type 4: Exercise.
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Let K/k be a finite extension of non-archimedean valued fields. Let

be the ramification index and
the residue degree. Then

with equality if k is discretely valued.
There exists an analogue for transcendental extensions:

Let K /k be a finitely generated extension of non-archimedean valued fields. Let

o v(K*X)
s = dimg (v(kx) ®ZQ>

and
t = tr. deg(K/k).
Then
s+t < tr. deg(K/k).
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Proof. Choose x, . . . ,x; € K™ such that [v(x;)] ® 1 are linearly independent over Q. Choose
Yi,.-., ¥ € Ok such that 1, ..., J; are algebraically independent over k. We will prove that
Xly...,Xs,V1,---,Yr are algebraically independent over k. Assume there exists non-zero

p € k[X, Y] such that p(x, y) = 0. Write

p(x,y) = Y arly’.

Choose (i, &)) such that V(“QL‘LX[) is minimal. We claim that every other monomial with
minimal valuation has i = . Note that v(y;) = 0 forall 1 <j<1.
Assume then that v(aﬂ%xllm cox) = v(ag,j )" - - x"). We have

t

Z(io,‘ — il,-)v(x,-) = v(ailzl) — V(“L()IJ)) € V(kX )

i=1
But the v(x;) lie in distinct cosets of v(K*)/v(k* ), and so i, = i;. We divide p(x,y) by
aﬁ%x’i‘” <+ +x (o get an expression
Sbpl+C,
where v(b;;) = 0 and v(C) > 0. Passing to the residue field, we get an algebraic dependence
relation between the y;: this is a contradiction.
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We give one more classification of the points of Ai’a":

Forx € Ay, let s(x) = dimg (V(VK(%)) Rz Q) and 1(x) = tr. deg(K(x)/k). Then

’ Type ‘ s ‘ t ‘ tr. deg(K(x)/k) ‘

(=3 R Nl ]

0
1
1
1

o|lo|=|o

1
2
3
4
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We can define analytic functions on A}(’an:

Let U be an open subset of A}c’a". An analytic function on U is a map
F:U— H I (x)
xeU
such that for all x € U the following hold:
(1) F(x) € #(x), and
(2) there exists a neighbourhood V of x and sequences {P,,} and {Q,} of elements of k[T] such
that the 9, don’t vanish on V and

_ Pa(y)
On(y)

lim sup
n—o0 yev

F(y)

Setting O(U) = {analytic functions on U} makes Ai‘a" into a locally ringed space.

O(Ak’a“) consists of power series with infinite radius of convergence. The local ring O| lo
consists of power series with positive radius of convergence.
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Figure: The structure sheaf of .# (Z)

Let U = #(Z)\| |andletj: U — .#(Z) be the natural inclusion map. Then (jxOuv), |, is
the ring of adeles of Q and (j+ Oy )
any ring of integers.

I o the group of ideles. This still works for Z replaced by
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Let o/ be a finite type k-algebra, e.g. &7 = k[T]. For f € 7, set
D(f) = {xe # (o) |f(x) # 0}. The map .#(</[1/f]) — .# (<) induced by localisation is
a homeomorphism onto its image D(f).

This lets us identify A;*™\ | |, = D(T) with .# ([T, 1/T1). Take another copy of

A,{,’a" = M (k[T']) with D(T") = .# (k[T’, 1/T’]). We can glue both copies of Ai’an along
D(T) and D(T") by the isomorphism induced by k[T’,1/T"] — k[T, 1/T] : T — 1/T. This
gives the Berkovich projective line ]P’,'{’a”. It is Hausdorff, compact, and uniquely
path-connected.

Note: there is also a Proj-type construction of ]P’,l{’“".
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Finally, let us prove that every entire non-constant function f : A,>*" — A, **" is surjective:

We know that f = Zio a;T' is a power series with infinite radius of convergence. Subtracting a
constant from f, it is enough to show that f has a root. We consider the Newton polygon N(f)
of f: if N'(f) has a segment of finite length n, then f has at least n roots. This can only fail if

N (f) doesn’t exist, i.e. if the points (j, v(a;)) don’t have a lower convex hull in R?. But f has
infinite radius of convergence, so in particular v, (a;/p™) — o0 as i — oo for all n, so the

Newton polygon N (f) exists and f has a root.




