Berkovich Spaces I

Lukas Kofler

05/07/2021

Let *X* be an algebraic variety over *k*, an algebraically closed, complete, non-archimedean field with non-trivial absolute value. We can try to assign X(k) the weakest topology such that for every Zariski open $U \subset X$ and every regular function $f \in \mathcal{O}_X(U)$, the function $U(k) \to \mathbb{R} : P \mapsto |f(P)|$ is continuous.

Tate: use a Grothendieck topology. But this implies the existence of non-zero abelian sheaves with all stalks zero: we need more points.

Berkovich: points with values in fields with rank 1 valuations. Spaces become Hausdorff and locally compact.

Huber considered arbitrary valuations, giving adic spaces. These are not Hausdorff in general.

All rings are commutative with identity.

A seminorm on a ring \mathscr{A} is a function $| : \mathscr{A} \to \mathbb{R}_{\geq 0}$ such that |0| = 0, |1| = 1, $|f + g| \leq |f| + |g|$ and $|fg| \leq |f| \cdot |g|$ for all $f, g \in \mathscr{A}$. If $|fg| = |f| \cdot |g|$, we say that $| : g \in \mathscr{A}$ is multiplicative. Each seminorm | : | determines a topology, which is Hausdorff if and only if | : g = a norm, i.e. $|f| = 0 \Rightarrow f = 0$. One can construct a completion of \mathscr{A} with respect to any seminorm. We say that two seminorms | : | and | : |' are *equivalent* if there exist C, C' > 0 such that $C |f| \leq |f|' \leq C' |f|$ for all $f \in \mathscr{A}$. Equivalent seminorms define the same topology. If **a** is an ideal of \mathscr{A} we can define the *residue seminorm* on \mathscr{A}/\mathbf{a} by $|f| = \inf\{|g| \mid g \text{ projects to } f\}$. The residue seminorm is a norm if and only if **a** is closed in \mathscr{A} .

Lemma 1.

If \mathscr{A} is a normed ring and $f \in \mathscr{A}$ is invertible, then for all $m, n \ge 0$ we have $||f^n||^{-m} \le ||f^{-m}||^n$.

Lemma 2.

If $\sum_i a_i < \infty$ and the a_i are all positive real numbers, then $\sum_i a_i^n < \infty$ for all $n \ge 1$.

Let $\phi : \mathscr{A} \to \mathscr{B}$ be a homomorphism of seminormed rings. We say that ϕ is *bounded* if there is a constant C > 0 such that $|\phi(f)| \leq C |f|$ for all $f \in \mathscr{A}$.

A Banach ring is a normed ring that is complete with respect to its norm.

Examples. (i) The *trivial norm* $| |_0$ with $|f|_0 = 1$ for all $f \neq 0$ makes any ring into a Banach ring.

(ii) If \mathscr{A} is Banach and **a** is a closed ideal, then \mathscr{A}/\mathbf{a} is complete with respect to the residue norm. The set of invertible element in \mathscr{A} is open and an element $x \in \mathscr{A}$ is not invertible if and only if it lies in some maximal ideal of \mathscr{A} . It follows that every maximal ideal is closed. (iii) \mathbb{Z} is a Banach ring with respect to the usual absolute value $| \cdot |_{\infty}$.

(iv) For a Banach ring \mathscr{A} and a positive number r, let $\mathscr{A}\langle\langle r^{-1}T\rangle\rangle$ denote the set of power series $f = \sum_{i=0}^{\infty} a_i T^i$ such that $\sum_{i=0}^{\infty} ||a_i|| r^i < \infty$. Then $\mathscr{A}\langle\langle r^{-1}T\rangle\rangle$ is Banach with respect to the norm $||f|| = \sum_{i=0}^{\infty} ||a_i|| r^i$. Note that an element 1 - aT, with $a \in \mathscr{A}$, is invertible in $\mathscr{A}\langle\langle r^{-1}T\rangle\rangle$ if and only if $\sum_{i=0}^{\infty} ||a_i|| r^i < \infty$.

Let \mathscr{A} be a Banach ring. The *spectrum* $\mathscr{M}(A)$ is the set of all bounded multiplicative seminorms on \mathscr{A} equipped with the weakest topology such that the evaluation functions $| | \mapsto |f|$, for $f \in \mathscr{A}$, are continuous. Our first goal is the following theorem.

Theorem.

The spectrum $\mathcal{M}(\mathcal{A})$ is a nonempty compact Hausdorff space.

Let $\phi : \mathscr{A} \to \mathscr{B}$ be a bounded homomorphism of Banach rings. It induces a continuous map $\phi^* : \mathscr{M}(\mathscr{B}) \to \mathscr{M}(\mathscr{A})$. Assume that the set of elements of the form $\phi(f)/\phi(g)$ for $f, g \in \mathscr{A}$ and $\phi(g)$ invertible in \mathscr{B} is dense in \mathscr{B} . Then by continuity, every seminorm of \mathscr{B} is determined by its values on this set, i.e. ϕ^* is injective.

We are ready to prove that $\mathcal{M}(\mathcal{A})$ is nonempty.

By the previous observation it is enough to show that $\mathscr{M}(\mathscr{A}/\mathbf{m})$ is nonempty, where \mathbf{m} is a maximal ideal. So assume that \mathscr{A} is a field. Let *S* be the set of nonzero bounded seminorms on \mathscr{A} . *S* is nonempty because it contains the norm of \mathscr{A} . We put a partial order on *S*: $|| \leq ||'$ if $|f| \leq |f|'$ for all $f \in \mathscr{A}$. Let || be a minimal element in *S*. We can replace \mathscr{A} by its completion with respect to || and thus assume that || is the norm of \mathscr{A} . Now we need to show that || is multiplicative.

First we prove that $|f^n| = |f|^n$ for all $f \in \mathscr{A}$. If not, there exists an f such that $|f^n| < |f|^n$ for some n. We claim that f - T is not invertible in the Banach ring $\mathscr{A}\langle\langle r^{-1}T\rangle\rangle$ where $r = |f^n|^{1/n}$. The inverse of f - T in $\mathscr{A}[[T]]$ is $f^{-1}(1 - f^{-1}T)^{-1}$. Therefore it is enough to show that $\sum_{i=0}^{\infty} |f^{-i}| r^i$ does not converge. Applying Lemma 1, we have

$$\infty = \sum_{i=0}^{\infty} 1 = \sum_{i=0}^{\infty} r^{-in} r^{in} = \sum_{i=0}^{\infty} |f^n|^{-i} r^{in} \leq \sum_{i=0}^{\infty} \left| f^{-i} \right|^n r^{in}.$$

By Lemma 2, this implies that f - T is not invertible in $\mathscr{A}\langle\langle r^{-1}T\rangle\rangle$.

Consider the homomorphism $\phi : \mathscr{A} \to \mathscr{A}\langle\langle r^{-1}T \rangle\rangle/(f-T)$. Since \mathscr{A} is a field, this is injective, and $\|\phi(f)\| = \|T\| = r = |f^n|^{1/n} < |f|$. Pulling back the residue norm on $\mathscr{A}\langle\langle r^{-1}T \rangle\rangle/(f-T)$ to \mathscr{A} we get a seminorm $| \ |$ satisfying |f|' < |f|. This is impossible as $| \ |$ is a minimal seminorm.

Similarly we can prove that for nonzero $f \in A$ we have $|f^{-1}| = |f|^{-1}$. Together with submultiplicativity this gives

$$|fg|^{-1} = |f^{-1}g^{-1}| \le |f^{-1}||g^{-1}| = |f|^{-1}|g|^{-1} \le |fg|^{-1}$$

Thus | | is multiplicative and $\mathcal{M}(\mathcal{A})$ is nonempty.

Let x' and x" be distinct points of $\mathcal{M}(\mathcal{A})$. Without loss of generality, there exists $f \in \mathcal{A}$ with $|f|_{x'} < |f|_{x''}$. Pick a real number r with $|f|_{x'} < r < |f|_{x''}$. Then $U' = \{x \in \mathcal{M}(\mathcal{A}) \mid |f|_{x'} < r\}$ and $U'' = \{x \in \mathcal{M}(\mathcal{A}) \mid |f|_x > r\}$ are disjoint neighbourhoods of x' and x" respectively. Hence $\mathcal{M}(\mathcal{A})$ is Hausdorff. Let $| |_x$ be an element of $\mathcal{M}(\mathcal{A})$. The kernel \mathfrak{p}_x is a closed prime ideal of \mathcal{A} . The value |f| depends only on the residue class of f in $\mathcal{A}/\mathfrak{p}_x$. The resulting valuation on $\mathcal{A}/\mathfrak{p}_x$ extends to a valuation on its fraction field K(x). The completion of K(x) with respect to $| |_x$ is a complete valued field denoted by $\mathcal{H}(x)$. The image of $f \in \mathcal{A}$ in $\mathcal{H}(x)$ is denoted by f(x). The homomorphism

$$\mathscr{A} \longrightarrow \prod_{x \in \mathscr{M}(\mathscr{A})} \mathscr{H}(x)$$

which sends f to $\hat{f} = (f(x))_{x \in \mathcal{M}(\mathscr{A})}$ is called the *Gel'fand transform*. Set $\mathscr{B} = \prod_{x \in \mathcal{M}(\mathscr{A})} \mathscr{H}(x)$. The induced map $\mathscr{M}(\mathscr{B}) \to \mathscr{M}(\mathscr{A})$ is surjective. Compactness of $\mathscr{M}(\mathscr{A})$ follows from the following result.

Theorem.

Let $\{K_i\}_{i \in I}$ be a family of valuation fields. Then the spectrum $\mathscr{M}(\mathscr{B})$ of $\mathscr{B} = \prod_{i \in I} K_i$ is homeomorphic to the Stone-Čech compactification of the discrete set *I*.

This is proved using filters.

There is a natural continuous map $\mathcal{M}(\mathscr{A}) \to \operatorname{Spec}(\mathscr{A}) : x \mapsto \mathfrak{p}_x$, sending a seminorm to its kernel.

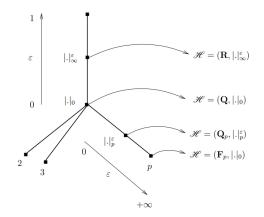
Let's look at $\mathscr{M}(\mathbb{Z})$ more closely. By Ostrowski's theorem, any multiplicative seminorm on \mathbb{Z} is one of the following:

(1) A seminorm $| |_{\infty,\varepsilon}$, where $\varepsilon \in (0,1]$:

$$|n|_{\infty,\varepsilon} = |n|_{\infty}^{\varepsilon}$$

(2) The trivial seminorm | |₀
(3) A *p*-adic seminorm | |_{p,ε}, where *p* is a prime and |*n*|_{p,ε} = ε^{-ν_p(n)} for ε ∈ (0,∞)
(4) A *p*-trivial seminorm | |_{p,0} where *p* is a prime and

$$|n|_{p,\infty} = \begin{cases} 0, & \text{if } p \mid n. \\ 1, & \text{otherwise} \end{cases}$$



The natural map $\mathscr{M}(\mathscr{A}) \to \operatorname{Spec}(\mathbb{Z})$ sends the lower endpoints of the prime number intervals to their respective prime ideals and all other points to the generic point of $\operatorname{Spec}(\mathbb{Z})$.

Fix $n \in \mathbb{Z}$. The preimage of $\{a < |n|_x < b\} \subset \mathbb{R}_{\ge 0}$ is open in $\mathscr{M}(\mathbb{Z})$. The open neighbourhoods of $|\cdot|_0$ in $\mathscr{M}(\mathbb{Z})$ are those subsets which contain all branches except finitely many, and contain a Euclidean neighbourhood of $|\cdot|_0$ in the remaining ones.

Let *k* be a complete, algebraically closed, non-archimedean field.

The *Berkovich affine line* $\mathbb{A}_k^{1,an}$ is the set of multiplicative seminorms on the polynomial ring k[T] which restrict to the valuation on k. This set is given the weakest topology such that all real-valued functions of the form $| | \mapsto |f|$, for $f \in k[T]$, are continuous.

Let $k\langle r^{-1}T\rangle = \{f = \sum_{i=0}^{\infty} |\sup |a_i| r^i < \infty\}$ be the Tate algebra, which is a Banach ring with respect to the norm $||f|| = \sup |a_i| r^i$. Set $X = \mathscr{M}(k\langle r^{-1}T\rangle)$. For $a \in k$ and $\rho \in \mathbb{R}$ with $|a| \leq r$ and $0 < \rho \leq r$, define $D(a, \rho) = \{x \in X \mid |x - a| \leq \rho\}$. We have D(0, r) = X. Furthermore $\mathbb{A}_k^{1,an} \cong \bigcup_{r>0} D(0,r)$, so $\mathbb{A}_k^{1,an}$ is locally compact. *Proof.* We define continuous maps in each direction. The inclusion $k[T] \to k\langle r^{-1}T\rangle$ induce maps $\iota_r : D(0, r) \to \mathbb{A}_k^{1,an}$. These maps are compatible, so they induce

$$\iota: \varinjlim D(0,r) = \bigcup_{r>0} D(0,r) \to \mathbb{A}^{1,\mathrm{an}}_k.$$

Suppose $x \in \mathbb{A}_{k}^{1,\mathrm{an}}$, let $r = |T|_{x}$. Define $\psi(x) \in D(0,r)$ by $|f|_{\psi(x)} = \lim_{n \to \infty} \left| \sum_{i=0}^{n} a_{i} T^{i} \right|_{x}$

for $f \in k\langle r^{-1}T \rangle$. The resulting map $\psi : \mathbb{A}_k^{1,\mathrm{an}} \to \varinjlim D(0,r)$ is inverse to ι .

Our next goal is to characterise the points of $\mathbb{A}_k^{1,an}$. Each element *a* of *k* gives rise to a point of $\mathbb{A}_k^{1,an}$ via the seminorm

$$| \ |_a : f \in k[T] \mapsto |f(a)| \in \mathbb{R}_{\geq 0}.$$

Conversely *a* can be recovered from $| |_a$ since ker $(| |_a) = (T - a)$. This gives an injection $k \hookrightarrow \mathbb{A}_k^{1,\text{an}}$. We can identify a point *a* of *k* with a generalised disk D(a, 0) of radius 0. We call these type 1 points.

Any closed disk D(a, r) with r > 0 defines a multiplicative seminorm given by

 $| |_D : k[T] \to \mathbb{R}_{\geq 0} : f \mapsto \sup_{x \in D} |f(x)|$. If *r* lies in the value group $|k^{\times}|$, this is a type 2 point. If $r \notin |k|$, it is a type 3 point.

In general, there is one more type of point: let $D_1 \supset D_2 \supset D_3 \supset \ldots$ be a sequence of nested closed disks of k. If $\bigcup D_i = \emptyset$, then $\lim_{n \to \infty} |f|_{D_n}$ defines a new point of $\mathbb{A}_k^{1,\mathrm{an}}$.

Such points, called type 4 points, only occur when k is not spherically complete.

We say that k is spherically complete if every nested sequence of closed disk has nonempty intersection.

Theorem.

 $\mathbb{C}_p = \widehat{\overline{\mathbb{Q}_p}}$ is not spherically complete.

Proof. Let r_n be a sequence of real numbers converging to r > 0 from above. Set $D_0 = D(0, r_0)$. We can find disjoint disks D_1 and D'_1 both of radius r_1 contained in D_0 . Continuing in this fashion, we get 2^{\aleph_0} nested sequences of closed disks. Let \mathscr{D}_{γ} be one such sequence and set $D_{\gamma} = \bigcap_{D \in \mathscr{D}_{\gamma}} D$. Assume D_{γ} is nonempty, let $x \in D_{\gamma}$. Since x lies in D for all $D \in \mathscr{D}_{\gamma}$, it is the centre of each disk. So D_{γ} contains D(x, r). Now if |x - y| = r' > r, then there is some $D \in \mathscr{D}_{\gamma}$ with radius less than r'. So $y \notin D$ and thus $y \notin D_{\gamma}$. Thus D_{γ} is either empty of a disk of radius r. In particular, each D_{γ} is open. But \mathbb{C}_{γ} is generable ($\overline{\mathbb{O}}$ is dense in it) so each nonempty D_{γ} must contain a point of $\overline{\mathbb{O}}$. But the

But \mathbb{C}_p is separable ($\overline{\mathbb{Q}}$ is dense in it), so each nonempty D_γ must contain a point of $\overline{\mathbb{Q}}$. But the D_γ are disjoint, so all but countably many of them must be empty.

Remark. Every local field is sperically complete. Every valued field has a spherical completion.

Theorem.

Every point of $\mathbb{A}_k^{1,\mathrm{an}}$ can be realised as $\lim_{n\to\infty} ||_{D_n}$ for some nested sequence $D_1 \supset D_2 \supset \ldots$ of closed disks in *k*.

Proof. Seminorms are multiplicative and k is algebraically closed, so we only need to consider seminorms of linear polynomials in k[T]. Fix a point $x \in \mathbb{A}_k^{1,an}$. Consider the family \mathcal{F} of closed disks

$$\mathcal{F} = \{ D(a, |T-a|_x) \mid a \in k \}.$$

Let $a, b \in k$. Without loss of generality, $|T - a|_x \ge |T - b|_x$. We have $|a - b| = |a - b|_x \le \max\{|T - a|_x, |T - b|_x\}$ with equality if $|T - a|_x < |T - b|_x$. Thus $b \in D(a, |T - a|_x)$ and so $D(b, |T - b|_x) \subset D(a, |T - a|_x)$. We see that \mathcal{F} is totally ordered. Let $r = \inf_{a \in k} |T - a|_x$. Choose a sequence of points a_n in k such that r_n decreases to r, where $r_n = |T - a_n|_x$. Set $D_n = D(a_n, r_n)$. This is a nested sequence of closed disks. Now one can show that for all $a \in k$, $|T - a|_x = \lim_{n \to \infty} |T - a|_{D_n}$. Summing up: let $| |_x \in \mathbb{A}_k^{1,\text{an}}$, let $D_n = D(a_n, r_n)$ be the corresponding nested sequence of closed disks, and let $r = \lim r_n$.

Type 1: r = 0 and $\bigcap D_n = a$, where completeness of k ensures that the limit is nonempty.

Type 2: $\bigcap D_n = D(a, r)$ with $r \in |k^{\times}|$

Type 3: $\bigcap D_n = D(a, r)$ with $r \notin |k|$.

Type 4: $\bigcap D_n = \emptyset$.

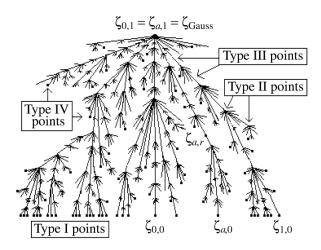


Figure: The Berkovich unit disk D(0, 1).

 $\mathbb{A}_k^{1,\mathrm{an}}$ is uniquely path-connected.

Local description of the points of $\mathbb{A}_k^{1,an}$:

For $x \in \mathbb{A}_k^{1,\mathrm{an}}$, define $T_x = \{$ connected components of $\mathbb{A}_k^{1,\mathrm{an}} - \{x\}\}$.

If x is Type 1, then $\#T_x = 1$.

If x is Type 2, then $\#T_x$ is infinite: there are infinitely many branches joining at x.

If *x* is Type 3, there is no branching: $\#T_x = 2$.

If x is Type 4, $\#T_x = 1$: x is a dead end.

Let $x \in \mathbb{A}_{k}^{1,\mathrm{an}}$. Recall that K(x) is defined as the fraction field of $k[T]/\ker(||_{x})$ and $\mathscr{H}(x)$ is the completion of K(x) with respect to $||_{x}$. We can describe the points of $\mathbb{A}_{k}^{1,\mathrm{an}}$ in terms of the value group and the residue field $\widetilde{\mathscr{H}(x)}$ of $\mathscr{H}(x)$, where $\widetilde{\mathscr{H}(x)} = \mathcal{O}_{x}/\mathfrak{m}_{x}$ with $\mathcal{O}_{x} = \{f \in K(x) \mid |f|_{x} \leq 1\}$ and $\mathfrak{m}_{x} = \{f \in K(x) \mid |f|_{x} < 1\}$.

Туре	Value group $\left \mathscr{H}(x)^{\times} \right $	Residue field $\widetilde{\mathscr{H}(x)}$
1	$ k^{\times} $	Ĩ
2	$ k^{\times} $	$ ilde{k}(t)$
3	$\left<\left k^{ imes} ight ,r ight>$	Ĩ
4	$ k^{\times} $	$ ilde{k}$

Here, $r \in \mathbb{R} \setminus |k^{\times}|$. Moreover, *x* is of type 1 if and only if $\mathcal{H}(x) \cong k$.

Proof. Type 1: x is given by $|f|_x = |f(a)|$. ker $||_x = (T - a)$, so $K(x) = \mathscr{H}(x) = k$. Type 2: x corresponds to a disk D(a, r) with $r \in |k^{\times}|$. No polynomial vanishes identically on D(a, r), so $K(x) \cong k(T)$. For any $f \in k[T]$ there exists a $p \in D(a, r)$ such that $|f|_x = |f(p)|$ by the non-archimedean maximum principle. Therefore $|K(x)^{\times}| = |\mathscr{H}(x)^{\times}| = |k^{\times}|$. Take $c \in k^{\times}$ with |c| = r. Let t be the reduction of (T - a)/c in the residue field H(x). One can show that t is transcendental over \tilde{k} and $H(x) = K(x) = \tilde{k}(t)$. Type 3: Suppose x corresponds to D(a, r) with $r \notin |k^{\times}|$. We have $|T - a|_x = r$, and so $|\mathscr{H}(x)^{\times}| = \langle |k^{\times}|, r \rangle$. To prove that the residue field is \tilde{k} , write $f \in k(T)$ as a quotient of polynomials f = g/h,

$$g(T) = \sum b_i (T-a)^i, h(T) = \sum c_j (T-a)^j.$$

Notice that since $r \notin |k^{\times}|$, the strict ultrametric inequality applies to the terms of g and h: there are indices i_0 and j_0 such that $|g|_x = |b_{i_0}| r^{i_0}$, $|h|_x = |c_{j_0}| r^{j_0}$. If $|f|_x = 1$, we must have $i_0 = j_0$ and

$$f \equiv b_{i_0}/c_{i_0} \mod \mathfrak{m}_x.$$

So every $f \in \mathcal{O}_x$ has constant reduction, i.e. $\widetilde{\mathscr{H}(x)} \cong \tilde{k}$. Type 4: Exercise. Let K/k be a finite extension of non-archimedean valued fields. Let

$$e = [v(K^{\times}) : v(k^{\times})]$$

be the ramification index and

$$f = [\tilde{K} : \tilde{k}]$$

the residue degree. Then

 $ef \leq [K:k]$

with equality if k is discretely valued.

There exists an analogue for transcendental extensions:

Let K/k be a finitely generated extension of non-archimedean valued fields. Let

$$s = dim_{\mathbb{Q}}\left(rac{v(K^{ imes})}{v(k^{ imes})}\otimes_{\mathbb{Z}}\mathbb{Q}
ight)$$

and

$$t = \operatorname{tr.deg}(\tilde{K}/\tilde{k})$$

Then

$$s + t \leq \operatorname{tr.deg}(K/k).$$

Proof. Choose $x_1, \ldots, x_s \in K^{\times}$ such that $[v(x_i)] \otimes 1$ are linearly independent over \mathbb{Q} . Choose $y_1, \ldots, y_t \in \mathcal{O}_K$ such that $\tilde{y}_1, \ldots, \tilde{y}_t$ are algebraically independent over \tilde{k} . We will prove that $x_1, \ldots, x_s, y_1, \ldots, y_t$ are algebraically independent over k. Assume there exists non-zero $p \in k[\underline{X}, \underline{Y}]$ such that $p(\underline{x}, y) = 0$. Write

$$p(\underline{x},\underline{y}) = \sum a_{\underline{i}\underline{j}}\underline{x}^{\underline{i}}\underline{y}^{\underline{j}}.$$

Choose $(\underline{i}_0, \underline{j}_0)$ such that $v(a_{\underline{i}\underline{j}\underline{x}}^{\underline{i}\underline{y}\underline{j}})$ is minimal. We claim that every other monomial with minimal valuation has $\underline{i} = \underline{i}_0$. Note that $v(y_j) = 0$ for all $1 \le j \le t$. Assume then that $v(a_{\underline{i}_0j_0} x_1^{i_01} \cdots x_s^{i_0t}) = v(a_{\underline{i}_1j_1} x_1^{i_11} \cdots x_s^{i_1t})$. We have

$$\sum_{i=1}^{t} (i_{0i} - i_{1i})v(x_i) = v(a_{\underline{i}_1\underline{j}_1}) - v(a_{\underline{i}_0\underline{j}_0}) \in v(k^{\times}).$$

But the $v(x_i)$ lie in distinct cosets of $v(K^{\times})/v(k^{\times})$, and so $\underline{i}_0 = \underline{i}_1$. We divide $p(\underline{x}, \underline{y})$ by $a_{\underline{i}_0\underline{j}_0}x_1^{\underline{i}_01}\cdots x_s^{\underline{i}_{0t}}$ to get an expression

$$\sum b_{\underline{ij}} y^{\underline{j}} + C,$$

where $v(b_{ij}) = 0$ and v(C) > 0. Passing to the residue field, we get an algebraic dependence relation between the \tilde{y}_i : this is a contradiction.

We give one more classification of the points of $\mathbb{A}_k^{1,\mathrm{an}}$:

For
$$x \in \mathbb{A}_{k}^{1,\mathrm{an}}$$
, let $s(x) = \dim_{\mathbb{Q}} \left(\frac{v(K(x))}{v(k)} \otimes_{\mathbb{Z}} \mathbb{Q} \right)$ and $t(x) = \mathrm{tr.deg}(\widetilde{K(x)}/\widetilde{k})$. Then

Туре	s	t	$\operatorname{tr.deg}(K(x)/k)$
1	0	0	0
2	0	1	1
3	1	0	1
4	0	0	1

We can define analytic functions on $\mathbb{A}_k^{1,\mathrm{an}}$:

Let U be an open subset of $\mathbb{A}_k^{1,\mathrm{an}}$. An *analytic function* on U is a map

$$F: U \to \coprod_{x \in U} \mathscr{H}(x)$$

such that for all $x \in U$ the following hold:

(1) $F(x) \in \mathcal{H}(x)$, and

(2) there exists a neighbourhood V of x and sequences $\{P_n\}$ and $\{Q_n\}$ of elements of k[T] such that the Q_n don't vanish on V and

$$\lim_{n\to\infty}\sup_{y\in V}\left|F(y)-\frac{P_n(y)}{Q_n(y)}\right|=0.$$

Setting $\mathcal{O}(U) = \{$ analytic functions on $U\}$ makes $\mathbb{A}_k^{1,an}$ into a locally ringed space.

 $\mathcal{O}(\mathbb{A}_{k}^{1,\mathrm{an}})$ consists of power series with infinite radius of convergence. The local ring $\mathcal{O}_{||_{0}}$ consists of power series with positive radius of convergence.

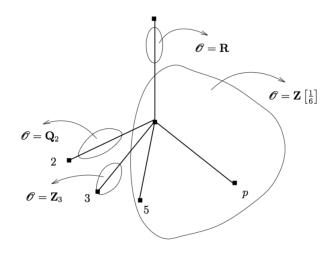


Figure: The structure sheaf of $\mathcal{M}(\mathbb{Z})$

Let $U = \mathscr{M}(\mathbb{Z}) \setminus |_{0}$ and let $j : U \to \mathscr{M}(\mathbb{Z})$ be the natural inclusion map. Then $(j_* \mathcal{O}_U)_{|_{0}}$ is the ring of adeles of \mathbb{Q} and $(j_* \mathcal{O}_U^{\times})_{|_{0}}$ the group of ideles. This still works for \mathbb{Z} replaced by any ring of integers.

Let \mathscr{A} be a finite type *k*-algebra, e.g. $\mathscr{A} = k[T]$. For $f \in \mathscr{A}$, set $D(f) = \{x \in \mathscr{M}(\mathscr{A}) | f(x) \neq 0\}$. The map $\mathscr{M}(\mathscr{A}[1/f]) \to \mathscr{M}(\mathscr{A})$ induced by localisation is a homeomorphism onto its image D(f).

This lets us identify $\mathbb{A}_{k}^{1,\mathrm{an}} \setminus |_{0} = D(T)$ with $\mathscr{M}(k[T, 1/T])$. Take another copy of $\mathbb{A}_{k}^{1,\mathrm{an}} = \mathscr{M}(k[T'])$ with $D(T') = \mathscr{M}(k[T', 1/T'])$. We can glue both copies of $\mathbb{A}_{k}^{1,\mathrm{an}}$ along D(T) and D(T') by the isomorphism induced by $k[T', 1/T'] \to k[T, 1/T] : T' \mapsto 1/T$. This gives the Berkovich projective line $\mathbb{P}_{k}^{1,\mathrm{an}}$. It is Hausdorff, compact, and uniquely path-connected.

Note: there is also a Proj-type construction of $\mathbb{P}_{k}^{1,an}$.

Finally, let us prove that every entire non-constant function $f : \mathbb{A}_k^{1,\mathrm{an}} \to \mathbb{A}_k^{1,\mathrm{an}}$ is surjective:

We know that $f = \sum_{i=0}^{\infty} a_i T^i$ is a power series with infinite radius of convergence. Subtracting a constant from f, it is enough to show that f has a root. We consider the Newton polygon $\mathcal{N}(f)$ of f: if $\mathcal{N}(f)$ has a segment of finite length n, then f has at least n roots. This can only fail if $\mathcal{N}(f)$ doesn't exist, i.e. if the points $(j, v(a_j))$ don't have a lower convex hull in \mathbb{R}^2 . But f has infinite radius of convergence, so in particular $v_p(a_i/p^{ni}) \to \infty$ as $i \to \infty$ for all n, so the Newton polygon $\mathcal{N}(f)$ exists and f has a root.