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Let X be an algebraic variety over k, an algebraically closed, complete, non-archimedean field
with non-trivial absolute value. We can try to assign Xpkq the weakest topology such that for
every Zariski open U � X and every regular function f P OXpUq, the function
Upkq Ñ R : P ÞÑ

∣∣ f pPq
∣∣ is continuous.

Tate: use a Grothendieck topology. But this implies the existence of non-zero abelian sheaves
with all stalks zero: we need more points.

Berkovich: points with values in fields with rank 1 valuations. Spaces become Hausdorff and
locally compact.

Huber considered arbitrary valuations, giving adic spaces. These are not Hausdorff in general.
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All rings are commutative with identity.
A seminorm on a ring A is a function | | : A Ñ R¥0 such that|0| � 0,|1| � 1,
| f � g| ¤ | f |� | g| and | fg| ¤ | f | � | g| for all f , g P A .
If | fg| � | f | �|g|, we say that | | is multiplicative.
Each seminorm | | determines a topology, which is Hausdorff if and only if | | is a norm, i.e.
| f | � 0 ñ f � 0. One can construct a completion of A with respect to any seminorm.
We say that two seminorms | | and | |1 are equivalent if there exist C,C1 ¡ 0 such that
C | f | ¤ | f |1 ¤ C1 | f | for all f P A . Equivalent seminorms define the same topology. If a is an
ideal of A we can define the residue seminorm on A {a by | f | � inft|g| | g projects to f u.
The residue seminorm is a norm if and only if a is closed in A .

Lemma 1.

If A is a normed ring and f P A is invertible, then for all m, n ¥ 0 we have‖f n‖�m ¤
∥∥f�m

∥∥n.

Lemma 2.

If
°

i ai   8 and the ai are all positive real numbers, then
°

i an
i   8 for all n ¥ 1.

Let φ : A Ñ B be a homomorphism of seminormed rings. We say that φ is bounded if there is
a constant C ¡ 0 such that

∣∣φpf q∣∣ ¤ C | f | for all f P A .
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A Banach ring is a normed ring that is complete with respect to its norm.
Examples. (i) The trivial norm | |0 with | f |0 � 1 for all f � 0 makes any ring into a Banach
ring.
(ii) If A is Banach and a is a closed ideal, then A {a is complete with respect to the residue
norm. The set of invertible element in A is open and an element x P A is not invertible if and
only if it lies in some maximal ideal of A . It follows that every maximal ideal is closed.
(iii) Z is a Banach ring with respect to the usual absolute value | |8.
(iv) For a Banach ring A and a positive number r, let A xxr�1Tyy denote the set of power
series f �

°8
i�0 aiT i such that

°8
i�0‖ai‖ ri   8. Then A xxr�1Tyy is Banach with respect to

the norm‖ f‖ �
°8

i�0‖ai‖ ri. Note that an element 1 � aT , with a P A , is invertible in
A xxr�1Tyy if and only if

°8
i�0

∥∥ai
∥∥ ri   8.

Let A be a Banach ring. The spectrum M pAq is the set of all bounded multiplicative
seminorms on A equipped with the weakest topology such that the evaluation functions
| | ÞÑ | f |, for f P A , are continuous. Our first goal is the following theorem.

Theorem.

The spectrum M pA q is a nonempty compact Hausdorff space.
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Let φ : A Ñ B be a bounded homomorphism of Banach rings. It induces a continuous map
φ� : M pBq Ñ M pA q. Assume that the set of elements of the form φpf q{φpgq for f , g P A

and φpgq invertible in B is dense in B. Then by continuity, every seminorm of B is determined
by its values on this set, i.e. φ� is injective.

We are ready to prove that M pA q is nonempty.
By the previous observation it is enough to show that M pA {mq is nonempty, where m is a
maximal ideal. So assume that A is a field. Let S be the set of nonzero bounded seminorms on
A . S is nonempty because it contains the norm of A . We put a partial order on S: | | ¤ | |1 if
| f | ¤ | f |1 for all f P A . Let | | be a minimal element in S. We can replace A by its completion
with respect to | | and thus assume that | | is the norm of A . Now we need to show that | | is
multiplicative.
First we prove that | f n| � | f |n for all f P A . If not, there exists an f such that | f n|   | f |n for
some n. We claim that f � T is not invertible in the Banach ring A xxr�1Tyy where
r � | f n|1{n. The inverse of f � T in A rrTss is f�1p1 � f�1Tq�1. Therefore it is enough to
show that

°8
i�0

∣∣ f�i
∣∣ ri does not converge. Applying Lemma 1, we have

8 �
8̧

i�0

1 �
8̧

i�0

r�inrin �
8̧

i�0

| f n|�i rin ¤
8̧

i�0

∣∣∣ f�i
∣∣∣n rin.

By Lemma 2, this implies that f � T is not invertible in A xxr�1Tyy.
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Consider the homomorphism φ : A Ñ A xxr�1Tyy{pf � Tq. Since A is a field, this is
injective, and

∥∥φpf q∥∥ �‖T‖ � r � | f n|1{n   | f |. Pulling back the residue norm on
A xxr�1Tyy{pf � Tq to A we get a seminorm | | satisfying | f |1   | f |. This is impossible as
| | is a minimal seminorm.
Similarly we can prove that for nonzero f P A we have

∣∣∣ f�1
∣∣∣ � | f |�1. Together with

submultiplicativity this gives

| fg|�1 �
∣∣∣ f�1g�1

∣∣∣ ¤ ∣∣∣ f�1
∣∣∣ ∣∣∣ g�1

∣∣∣ � | f |�1 | g|�1 ¤ | fg|�1 .

Thus | | is multiplicative and M pA q is nonempty.

Let x1 and x2 be distinct points of M pA q. Without loss of generality, there exists f P A with
| f |x1   | f |x2 . Pick a real number r with | f |x1   r   | f |x2 . Then
U1 � tx P M pA q | | f |x1   ru and U2 � tx P M pA q | | f |x ¡ ru are disjoint
neighbourhoods of x1 and x2 respectively. Hence M pA q is Hausdorff.
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Let | |x be an element of M pA q. The kernel px is a closed prime ideal of A . The value | f |
depends only on the residue class of f in A {px. The resulting valuation on A {px extends to a
valuation on its fraction field Kpxq. The completion of Kpxq with respect to | |x is a complete
valued field denoted by H pxq. The image of f P A in H pxq is denoted by f pxq. The
homomorphism

A ÝÑ
¹

xPMpA q

H pxq

which sends f to f̂ � pf pxqqxPMpA q is called the Gel’fand transform.
Set B �

±
xPMpA q H pxq. The induced map M pBq Ñ M pA q is surjective. Compactness

of M pA q follows from the following result.

Theorem.

Let tKiuiPI be a family of valuation fields. Then the spectrum M pBq of B �
±

iPI Ki is
homeomorphic to the Stone-Čech compactification of the discrete set I.

This is proved using filters.
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There is a natural continuous map M pA q Ñ SpecpA q : x ÞÑ px, sending a seminorm to its
kernel.
Let’s look at M pZq more closely. By Ostrowski’s theorem, any multiplicative seminorm on Z
is one of the following:
(1) A seminorm | |8,ε, where ε P p0, 1s:

|n|8,ε � |n|ε8

(2) The trivial seminorm | |0
(3) A p-adic seminorm | |p,ε, where p is a prime and |n|p,ε � ε�vppnq for ε P p0,8q
(4) A p-trivial seminorm | |p,0 where p is a prime and

|n|p,8 �

$&%0, if p | n.

1, otherwise.

Lukas Kofler Berkovich Spaces I



The natural map M pA q Ñ SpecpZq sends the lower endpoints of the prime number intervals
to their respective prime ideals and all other points to the generic point of SpecpZq.

Fix n P Z. The preimage of ta   |n|x   bu � R¥0 is open in M pZq. The open
neighbourhoods of | |0 in M pZq are those subsets which contain all branches except finitely
many, and contain a Euclidean neighbourhood of | |0 in the remaining ones.
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Let k be a complete, algebraically closed, non-archimedean field.
The Berkovich affine line A1,an

k is the set of multiplicative seminorms on the polynomial ring
krTs which restrict to the valuation on k. This set is given the weakest topology such that all
real-valued functions of the form | | ÞÑ | f |, for f P krTs, are continuous.

Let kxr�1Ty � t f �
°8

i�0 | sup |ai| ri   8u be the Tate algebra, which is a Banach ring
with respect to the norm‖ f‖ � sup |ai| ri. Set X � M pkxr�1Tyq. For a P k and ρ P R with
|a| ¤ r and 0   ρ ¤ r, define Dpa, ρq � tx P X | |x � a| ¤ ρu. We have Dp0, rq � X.
Furthermore A1,an

k �
�

r¡0 Dp0, rq, so A1,an
k is locally compact.

Proof. We define continuous maps in each direction. The inclusion krTs Ñ kxr�1Ty induce
maps ιr : Dp0, rq Ñ A1,an

k . These maps are compatible, so they induce

ι : lim
ÝÑ

Dp0, rq �
¤
r¡0

Dp0, rq Ñ A1,an
k .

Suppose x P A1,an
k , let r � |T|x. Define ψpxq P Dp0, rq by

| f |ψpxq � lim
nÑ8

∣∣∣∣∣∣
ņ

i�0

aiT i

∣∣∣∣∣∣
x

for f P kxr�1Ty. The resulting map ψ : A1,an
k Ñ lim

ÝÑ
Dp0, rq is inverse to ι.
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Our next goal is to characterise the points of A1,an
k .

Each element a of k gives rise to a point of A1,an
k via the seminorm

| |a : f P krTs ÞÑ
∣∣f paq∣∣ P R¥0.

Conversely a can be recovered from | |a since kerp| |aq � pT � aq. This gives an injection
k ãÑ A1,an

k . We can identify a point a of k with a generalised disk Dpa, 0q of radius 0. We call
these type 1 points.
Any closed disk Dpa, rq with r ¡ 0 defines a multiplicative seminorm given by
| |D : krTs Ñ R¥0 : f ÞÑ supxPD

∣∣ f pxq
∣∣. If r lies in the value group

∣∣k�∣∣, this is a type 2 point.
If r R |k|, it is a type 3 point.
In general, there is one more type of point: let D1 � D2 � D3 � . . . be a sequence of nested
closed disks of k. If

�
Di � ∅, then limnÑ8 | f |Dn

defines a new point of A1,an
k .

Such points, called type 4 points, only occur when k is not spherically complete.
We say that k is spherically complete if every nested sequence of closed disk has nonempty
intersection.
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Theorem.

Cp �
xQp is not spherically complete.

Proof. Let rn be a sequence of real numbers converging to r ¡ 0 from above. Set
D0 � Dp0, r0q. We can find disjoint disks D1 and D11 both of radius r1 contained in D0.
Continuing in this fashion, we get 2ℵ0 nested sequences of closed disks. Let Dγ be one such
sequence and set Dγ �

�
DPDγ

D.
Assume Dγ is nonempty, let x P Dγ . Since x lies in D for all D P Dγ , it is the centre of each
disk. So Dγ contains Dpx, rq. Now if|x � y| � r1 ¡ r, then there is some D P Dγ with radius
less than r1. So y R D and thus y R Dγ . Thus Dγ is either empty of a disk of radius r. In
particular, each Dγ is open.
But Cp is separable (Q is dense in it), so each nonempty Dγ must contain a point of Q. But the
Dγ are disjoint, so all but countably many of them must be empty.

Remark. Every local field is sperically complete. Every valued field has a spherical completion.
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Theorem.

Every point of A1,an
k can be realised as limnÑ8 | |Dn

for some nested sequence
D1 � D2 � . . . of closed disks in k.

Proof. Seminorms are multiplicative and k is algebraically closed, so we only need to consider
seminorms of linear polynomials in krTs. Fix a point x P A1,an

k . Consider the family F of
closed disks

F � tDpa,|T � a|xq | a P ku.

Let a, b P k. Without loss of generality,|T � a|x ¥ |T � b|x. We have
|a � b| � |a � b|x ¤ maxt|T � a|x ,|T � b|xu with equality if |T � a|x   |T � b|x. Thus
b P Dpa,|T � a|xq and so Dpb,|T � b|xq � Dpa,|T � a|xq. We see that F is totally ordered.
Let r � infaPk|T � a|x. Choose a sequence of points an in k such that rn decreases to r, where
rn � |T � an|x. Set Dn � Dpan, rnq. This is a nested sequence of closed disks.
Now one can show that for all a P k, |T � a|x � limnÑ8|T � a|Dn

.
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Summing up: let | |x P A1,an
k , let Dn � Dpan, rnq be the corresponding nested sequence of

closed disks, and let r � lim rn.

Type 1: r � 0 and
�

Dn � a, where completeness of k ensures that the limit is nonempty.

Type 2:
�

Dn � Dpa, rq with r P
∣∣k�∣∣

Type 3:
�

Dn � Dpa, rq with r R |k|.

Type 4:
�

Dn � ∅.
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Figure: The Berkovich unit disk Dp0, 1q.

A1,an
k is uniquely path-connected.
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Local description of the points of A1,an
k :

For x P A1,an
k , define Tx � tconnected components of A1,an

k � txuu.

If x is Type 1, then #Tx � 1.

If x is Type 2, then #Tx is infinite: there are infinitely many branches joining at x.

If x is Type 3, there is no branching: #Tx � 2.

If x is Type 4, #Tx � 1: x is a dead end.
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Let x P A1,an
k . Recall that Kpxq is defined as the fraction field of krTs{ kerp| |xq and H pxq is

the completion of Kpxq with respect to | |x. We can describe the points of A1,an
k in terms of the

value group and the residue field �H pxq of H pxq, where �H pxq � Ox{mx with
Ox � t f P Kpxq | | f |x ¤ 1u and mx � t f P Kpxq | | f |x   1u.

Type Value group
∣∣H pxq�

∣∣ Residue field �H pxq

1
∣∣k�∣∣ k̃

2
∣∣k�∣∣ k̃ptq

3 x
∣∣k�∣∣ , ry k̃

4
∣∣k�∣∣ k̃

Here, r P Rz
∣∣k�∣∣. Moreover, x is of type 1 if and only if H pxq � k.
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Proof. Type 1: x is given by | f |x �
∣∣ f paq

∣∣. ker | |x � pT � aq, so Kpxq � H pxq � k.
Type 2: x corresponds to a disk Dpa, rq with r P

∣∣k�∣∣. No polynomial vanishes identically on
Dpa, rq, so Kpxq � kpTq. For any f P krTs there exists a p P Dpa, rq such that | f |x �

∣∣ f ppq
∣∣ by

the non-archimedean maximum principle. Therefore
∣∣Kpxq�∣∣ � ∣∣H pxq�

∣∣ � ∣∣k�∣∣. Take
c P k� with|c| � r. Let t be the reduction of pT � aq{c in the residue field�Hpxq. One can show
that t is transcendental over rk and �Hpxq ��Kpxq � k̃ptq.
Type 3: Suppose x corresponds to Dpa, rq with r R

∣∣k�∣∣. We have|T � a|x � r, and so∣∣H pxq�
∣∣ � x

∣∣k�∣∣ , ry. To prove that the residue field is k̃, write f P kpTq as a quotient of
polynomials f � g{h,

gpTq �
¸

bipT � aqi, hpTq �
¸

cjpT � aqj.

Notice that since r R
∣∣k�∣∣, the strict ultrametric inequality applies to the terms of g and h: there

are indices i0 and j0 such that|g|x �
∣∣bi0

∣∣ ri0 ,|h|x �
∣∣cj0

∣∣ rj0 . If | f |x � 1, we must have i0 � j0
and

f � bi0{ci0 mod mx.

So every f P Ox has constant reduction, i.e. �H pxq � k̃.
Type 4: Exercise.
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Let K{k be a finite extension of non-archimedean valued fields. Let

e � rvpK�q : vpk�qs

be the ramification index and
f � rK̃ : k̃s

the residue degree. Then
ef ¤ rK : ks

with equality if k is discretely valued.

There exists an analogue for transcendental extensions:

Let K{k be a finitely generated extension of non-archimedean valued fields. Let

s � dimQ

�
vpK�q
vpk�q

bZ Q

�

and
t � tr. degpK̃{k̃q.

Then
s � t ¤ tr. degpK{kq.
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Proof. Choose x1, . . . , xs P K� such that rvpxiqs b 1 are linearly independent over Q. Choose
y1, . . . , yt P OK such that ỹ1, . . . , ỹt are algebraically independent over k̃. We will prove that
x1, . . . , xs, y1, . . . , yt are algebraically independent over k. Assume there exists non-zero
p P krX, Ys such that ppx, yq � 0. Write

ppx, yq �
¸

aijxiyj.

Choose pi0, j0q such that vpaijxiyjq is minimal. We claim that every other monomial with
minimal valuation has i � i0. Note that vpyjq � 0 for all 1 ¤ j ¤ t.
Assume then that vpai0j

0
xi01

1 � � � xi0t
s q � vpai1j

1
xi11

1 � � � xi1t
s q. We have

ţ

i�1

pi0i � i1iqvpxiq � vpai1j
1
q � vpai0j

0
q P vpk�q.

But the vpxiq lie in distinct cosets of vpK�q{vpk�q, and so i0 � i1. We divide ppx, yq by

ai0j
0
xi01

1 � � � xi0t
s to get an expression ¸

bijyj � C,

where vpbijq � 0 and vpCq ¡ 0. Passing to the residue field, we get an algebraic dependence
relation between the ỹj: this is a contradiction.
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We give one more classification of the points of A1,an
k :

For x P A1,an
k , let spxq � dimQ

�
vpKpxqq

vpkq bZ Q
	

and tpxq � tr. degp�Kpxq{k̃q. Then

Type s t tr. degpKpxq{kq

1 0 0 0
2 0 1 1
3 1 0 1
4 0 0 1
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We can define analytic functions on A1,an
k :

Let U be an open subset of A1,an
k . An analytic function on U is a map

F : U Ñ
º
xPU

H pxq

such that for all x P U the following hold:
(1) Fpxq P H pxq, and
(2) there exists a neighbourhood V of x and sequences tPnu and tQnu of elements of krTs such
that the Qn don’t vanish on V and

lim
nÑ8

sup
yPV

∣∣∣∣∣Fpyq � Pnpyq
Qnpyq

∣∣∣∣∣ � 0.

Setting OpUq � tanalytic functions on Uu makes A1,an
k into a locally ringed space.

OpA1,an
k q consists of power series with infinite radius of convergence. The local ring O| |0

consists of power series with positive radius of convergence.
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Figure: The structure sheaf of M pZq

Let U � M pZqz | |0 and let j : U Ñ M pZq be the natural inclusion map. Then pj�OUq| |0 is
the ring of adeles of Q and pj�O�

U q| |0 the group of ideles. This still works for Z replaced by
any ring of integers.
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Let A be a finite type k-algebra, e.g. A � krTs. For f P A , set
Dpf q � tx P M pA q | f pxq � 0u. The map M pA r1{f sq Ñ M pA q induced by localisation is
a homeomorphism onto its image Dpf q.

This lets us identify A1,an
k z | |0 � DpTq with M pkrT, 1{Tsq. Take another copy of

A1,an
k � M pkrT 1sq with DpT 1q � M pkrT 1, 1{T 1sq. We can glue both copies of A1,an

k along
DpTq and DpT 1q by the isomorphism induced by krT 1, 1{T 1s Ñ krT, 1{Ts : T 1 ÞÑ 1{T . This
gives the Berkovich projective line P1,an

k . It is Hausdorff, compact, and uniquely
path-connected.

Note: there is also a Proj-type construction of P1,an
k .
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Finally, let us prove that every entire non-constant function f : A1,an
k Ñ A1,an

k is surjective:

We know that f �
°8

i�0 aiT i is a power series with infinite radius of convergence. Subtracting a
constant from f , it is enough to show that f has a root. We consider the Newton polygon N pf q
of f : if N pf q has a segment of finite length n, then f has at least n roots. This can only fail if
N pf q doesn’t exist, i.e. if the points pj, vpajqq don’t have a lower convex hull in R2. But f has
infinite radius of convergence, so in particular vppai{pniq Ñ 8 as i Ñ8 for all n, so the
Newton polygon N pf q exists and f has a root.
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